3,229 research outputs found
Quantum Exciton-Polariton Networks through Inverse Four-Wave Mixing
We demonstrate the potential of quantum operation using lattices of
exciton-polaritons in patterned semiconductor microcavities. By introducing an
inverse four-wave mixing scheme acting on localized modes, we show that it is
possible to develop non-classical correlations between individual condensates.
This allows a concept of quantum exciton-polariton networks, characterized by
the appearance of multimode entanglement even in the presence of realistic
levels of dissipation.Comment: 5 pages, 4 figures, pre-review version of manuscrip
Spontaneous and Superfluid Chiral Edge States in Exciton-Polariton Condensates
We present a scheme of interaction-induced topological bandstructures based
on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We
predict theoretically that this scheme allows the engineering of topological
gaps, without requiring a magnetic field or strong spin-orbit interaction
(transverse electric-transverse magnetic splitting). Under non-resonant
pumping, we find that an initially topologically trivial system undergoes a
topological transition upon the spontaneous breaking of phase symmetry
associated with polariton condensation. Under resonant coherent pumping, we
find that it is also possible to engineer a topological dispersion that is
linear in wavevector -- a property associated with polariton superfluidity.Comment: 6 pages, 4 figure
Stochastic Gross-Pitaevskii Equation for the Dynamical Thermalization of Bose-Einstein Condensates
We present a theory for the description of energy relaxation in a
nonequilibrium condensate of bosonic particles. The approach is based on
coupling to a thermal bath of other particles (e.g., phonons in a crystal, or
noncondensed atoms in a cold atom system), which are treated with a Monte Carlo
type approach. Together with a full account of particle-particle interactions,
dynamic driving, and particle loss, this offers a complete description of
recent experiments in which Bose-Einstein condensates are seen to relax their
energy as they propagate in real space and time. As an example, we apply the
theory to the solid-state system of microcavity exciton polaritons, in which
nonequilibrium effects are particularly prominent.Comment: Manuscript: 5 pages (Main Text) + 2 figures + 4 pages (Supplemental
Material). Proofs versio
Multivalley engineering in semiconductor microcavities
We consider exciton-photon coupling in semiconductor microcavities in which
separate periodic potentials have been embedded for excitons and photons. We
show theoretically that this system supports degenerate ground-states appearing
at non-zero in-plane momenta, corresponding to multiple valleys in reciprocal
space, which are further separated in polarization corresponding to a
polarization-valley coupling in the system. Aside forming a basis for
valleytronics, the multivalley dispersion is predicted to allow for spontaneous
momentum symmetry breaking and two-mode squeezing under non-resonant and
resonant excitation, respectively.Comment: Manuscript: 7 pages, 7 figures, published in Scientific Reports 7,
45243 (2017
Exciton-Polariton Oscillations in Real Space
We introduce and model spin-Rabi oscillations based on exciton-polaritons in
semiconductor microcavities. The phase and polarization of oscillations can be
controlled by resonant coherent pulses and the propagation of oscillating
domains gives rise to phase-dependent interference patterns in real space. We
show that interbranch polariton-polariton scattering controls the propagation
of oscillating domains, which can be used to realize logic gates based on an
analogue variable phase.Comment: 6 page
Monolithic Arrays of Grating-Surface-Emitting Diode Lasers and Quantum Well Modulators for Optical Communications
The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator
Spontaneous self-ordered states of vortex-antivortex pairs in a Polariton Condensate
Polariton condensates have proved to be model systems to investigate
topological defects, as they allow for direct and non-destructive imaging of
the condensate complex order parameter. The fundamental topological excitations
of such systems are quantized vortices. In specific configurations, further
ordering can bring the formation of vortex lattices. In this work we
demonstrate the spontaneous formation of ordered vortical states, consisting in
geometrically self-arranged vortex-antivortex pairs. A mean-field generalized
Gross-Pitaevskii model reproduces and supports the physics of the observed
phenomenology
Spontaneous polariton currents in periodic lateral chains
We predict spontaneous generation of superfluid polariton currents in planar
microcavities with lateral periodic modulation of both potential and decay
rate. A spontaneous breaking of spatial inversion symmetry of a polariton
condensate emerges at a critical pumping, and the current direction is
stochastically chosen. We analyse the stability of the current with respect to
the fluctuations of the condensate. A peculiar spatial current domain structure
emerges, where the current direction is switched at the domain walls, and the
characteristic domain size and lifetime scale with the pumping power.Comment: 6+6 pages, 4+1 figures (with supplemental material
Energy relaxation of exciton-polariton condensates in quasi-1D microcavities
We present a time-resolved study of energy relaxation and trapping dynamics
of polariton condensates in a semiconductor microcavity ridge. The combination
of two non-resonant, pulsed laser sources in a GaAs ridge-shaped microcavity
gives rise to profuse quantum phenomena where the repulsive potentials created
by the lasers allow the modulation and control of the polariton flow. We
analyze in detail the dependence of the dynamics on the power of both lasers
and determine the optimum conditions for realizing an all-optical polariton
condensate transistor switch. The experimental results are interpreted in the
light of simulations based on a generalized Gross-Pitaevskii equation,
including incoherent pumping, decay and energy relaxation within the
condensate.Comment: 15 pages, 20 figure
- …
