269,784 research outputs found

    Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland

    Get PDF
    Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan

    Numerical studies of interacting vortices

    Get PDF
    To get a basic understanding of the physics of flowfields modeled by vortex filaments with finite vortical cores, systematic numerical studies of the interactions of two dimensional vortices and pairs of coaxial axisymmetric circular vortex rings were made. Finite difference solutions of the unsteady incompressible Navier-Stokes equations were carried out using vorticity and stream function as primary variables. Special emphasis was placed on the formulation of appropriate boundary conditions necessary for the calculations in a finite computational domain. Numerical results illustrate the interaction of vortex filaments, demonstrate when and how they merge with each other, and establish the region of validity for an asymptotic analysis

    Phase Diffusion in Single-Walled Carbon Nanotube Josephson Transistors

    Get PDF
    We investigate electronic transport in Josephson junctions formed by single-walled carbon nanotubes coupled to superconducting electrodes. We observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced sub-harmonic gap structures in differential conductance, which arise from the multiple Andreev reflections at superconductor/nanotube interfaces. The voltage-current characteristics of these junctions display abrupt switching from the supercurrent branch to resistive branch, with a gate-tunable switching current ranging from 50 pA to 2.3 nA. The finite resistance observed on the supercurrent branch and the magnitude of the switching current are in good agreement with calculation based on the model of classical phase diffusion

    Design and analysis of a wire-driven flexible manipulator for bronchoscopic interventions

    Get PDF
    Bronchoscopic interventions are widely performed for the diagnosis and treatment of lung diseases. However, for most endobronchial devices, the lack of a bendable tip restricts their access ability to get into distal bronchi with complex bifurcations. This paper presents the design of a new wire-driven continuum manipulator to help guide these devices. The proposed manipulator is built by assembling miniaturized blocks that are featured with interlocking circular joints. It has the capability of maintaining its integrity when the lengths of actuation wires change due to the shaft flex. It allows the existence of a relatively large central cavity to pass through other instruments and enables two rotational degrees of freedom. All these features make it suitable for procedures where tubular anatomies are involved and the flexible shafts have to be considerably bent in usage, just like bronchoscopic interventions. A kinematic model is built to estimate the relationship between the translations of actuation wires and the manipulator tip position. A scale-up model is produced for evaluation experiments and the results validate the performance of the proposed mechanism

    Representations and classification of traveling wave solutions to Sinh-G{\"o}rdon equation

    Full text link
    Two concepts named atom solution and combinatory solution are defined. The classification of all single traveling wave atom solutions to Sinh-G{\"o}rdon equation is obtained, and qualitative properties of solutions are discussed. In particular, we point out that some qualitative properties derived intuitively from dynamic system method aren't true. In final, we prove that our solutions to Sinh-G{\"o}rdon equation include all solutions obtained in the paper[Fu Z T et al, Commu. in Theor. Phys.(Beijing) 2006 45 55]. Through an example, we show how to give some new identities on Jacobian elliptic functions.Comment: 12 pages. accepted by Communications in theoretical physics (Beijing

    Lattice Gluon Propagator in the Landau Gauge: A Study Using Anisotropic Lattices

    Full text link
    Lattice gluon propagators are studied using tadpole and Symanzik improved gauge action in Landau gauge. The study is performed using anisotropic lattices with asymmetric volumes. The Landau gauge dressing function for the gluon propagator measured on the lattice is fitted according to a leading power behavior: Z(q2)(q2)2κZ(q^2)\simeq (q^2)^{2\kappa} with an exponent κ\kappa at small momenta. The gluon propagators are also fitted using other models and the results are compared. Our result is compatible with a finite gluon propagator at zero momentum in Landau gauge.Comment: 14 pages, 4 figure

    Theory of point contact spectroscopy in electron-doped cuprates

    Full text link
    In the hole-doped dx2y2d_{x^{2}-y^{2}}-wave cuprate superconductor, due to the midgap surface state (MSS), a zero bias conductance peak (ZBCP) is widely observed in [110] interface point contact spectroscopy (PCS). However, ZBCP of this geometry is rarely observed in the electron-doped cuprates, even though their pairing symmetry is still likely the dx2y2d_{x^{2}-y^{2}}-wave. We argue that this is due to the coexistence of antiferromagnetic (AF) and the superconducting (SC) orders. Generalizing the Blonder-Tinkham-Klapwijk (BTK) formula to include an AF coupling, it is shown explicitly that the MSS is destroyed by the AF order. The calculated PCS is in good agreement with the experiments.Comment: 5 pages, 2 figures. Replaced with published versio

    Heavy Meson Masses in the \epsilon-Regime of HM\chi PT

    Full text link
    The pseudoscalar and vector heavy meson masses are calculated in the \epsilon-regime of Heavy Meson Chiral Perturbation Theory to order \epsilon^4. The results of this calculation will allow the determination of low-energy coefficients (LECs) directly from Lattice QCD calculations of the heavy mesons masses for lattices that satisfy the \epsilon-regime criteria. In particular, the LECs that parametrize the NLO volume dependance of the heavy meson masses are necessary for evaluating the light pseudoscalar meson (\pi, K, \eta) and heavy meson ({D^0, D^+, D^+_s}, {B^-,\bar{B}^0,\bar{B}^0_s}) scattering phase shifts.Comment: 16 pages, 6 figure

    Quantum-limited metrology in the presence of collisional dephasing

    Full text link
    Including collisional decoherence explicitly, phase sensitivity for estimating effective scattering strength χ\chi of a two-component Bose-Einstein condensate is derived analytically. With a measurement of spin operator J^x\hat{J}_{x}, we find that the optimal sensitivity depends on initial coherent spin state. It degrades by a factor of (2γ)1/3(2\gamma)^{1/3} below super-Heisenberg limit 1/N3/2\propto 1/N^{3/2} for particle number NN and the dephasing rate 1< ⁣<γ<N3/41<\!<\gamma<N^{3/4}. With a J^y\hat{J}_y measurement, our analytical results confirm that the phase ϕ=χt0\phi=\chi t\sim 0 can be detected at the limit even in the presence of the dephasing.Comment: 3.2 pages, 3 figure

    The role of phosphorylation and dephosphorylation of shell matrix proteins in shell formation : an in vivo and in vitro study

    Get PDF
    Protein phosphorylation is a fundamental mechanism regulating many aspects of cellular processes. Shell matrix proteins (SMPs) control crystal nucleation, polymorphism, morphology, and organization of calcium carbonate crystallites during shell formation. SMPs phosphorylation is suggested to be important in shell formation but the mechanism is largely unknown. Here, to investigate the mechanism of phosphorylation of SMPs in biomineralization, we performed in vivo and in vitro experiment. By injection of antibody against the anti-phosphoserine/threonine /tyrosine into the extrapallial fluid of the pearl oyster Pinctada fucata, phosphorylation of matrix proteins were significantly reduced after 6 days. Newly formed prismatic layers and nacre tablet were found to grow abnormally with reduced crystallinity and possibly changed crystal orientation shown by Raman spectroscopy. In addition, regeneration of shells is also inhibited in vivo. Then, protein phosphatase was used to dephosphorylate SMPs extracted from the shells. After dephosphorylation, the ability of SMPs to inhibiting calcium carbonate formation have been reduced. Surprisingly, the ability of SMPs to modulate crystal morphology have been largely compromised although phosphorylation extent remained to be at least half of the control. Furthermore, dephosphorylation of SMPs changed the distribution of protein occlusions and decreased the amount of protein occlusions inside crystals shown by confocal imaging, indicating interaction between phosphorylated SMPs and crystals. Taken together, this study provides insight into the mechanism of phosphorylation of SMPs during shell formation
    corecore