634 research outputs found

    Stably non-synchronizable maps of the plane

    Full text link
    Pecora and Carroll presented a notion of synchronization where an (n-1)-dimensional nonautonomous system is constructed from a given nn-dimensional dynamical system by imposing the evolution of one coordinate. They noticed that the resulting dynamics may be contracting even if the original dynamics are not. It is easy to construct flows or maps such that no coordinate has synchronizing properties, but this cannot be done in an open set of linear maps or flows in Rn\R^n, n2n\geq 2. In this paper we give examples of real analytic homeomorphisms of R2\R^2 such that the non-synchronizability is stable in the sense that in a full C0C^0 neighborhood of the given map, no homeomorphism is synchronizable

    Strictly Toral Dynamics

    Full text link
    This article deals with nonwandering (e.g. area-preserving) homeomorphisms of the torus T2\mathbb{T}^2 which are homotopic to the identity and strictly toral, in the sense that they exhibit dynamical properties that are not present in homeomorphisms of the annulus or the plane. This includes all homeomorphisms which have a rotation set with nonempty interior. We define two types of points: inessential and essential. The set of inessential points ine(f)ine(f) is shown to be a disjoint union of periodic topological disks ("elliptic islands"), while the set of essential points ess(f)ess(f) is an essential continuum, with typically rich dynamics (the "chaotic region"). This generalizes and improves a similar description by J\"ager. The key result is boundedness of these "elliptic islands", which allows, among other things, to obtain sharp (uniform) bounds of the diffusion rates. We also show that the dynamics in ess(f)ess(f) is as rich as in T2\mathbb{T}^2 from the rotational viewpoint, and we obtain results relating the existence of large invariant topological disks to the abundance of fixed points.Comment: Incorporates suggestions and corrections by the referees. To appear in Inv. Mat

    Analysis of symmetries in models of multi-strain infections

    Get PDF
    In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases

    Mathematical description of bacterial traveling pulses

    Get PDF
    The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on {\em E. coli} have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This model can account for recent experimental observations with {\em E. coli}. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion). In addition we can capture quantitatively the main characteristics of the pulse such as the speed and the relative size of tails. This work opens several experimental and theoretical perspectives. Coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance the stiffness of the signal integration process turns out to have a strong effect on collective motion. Furthermore the bottom-up scaling allows to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion

    The effects of symmetry on the dynamics of antigenic variation

    Full text link
    In the studies of dynamics of pathogens and their interactions with a host immune system, an important role is played by the structure of antigenic variants associated with a pathogen. Using the example of a model of antigenic variation in malaria, we show how many of the observed dynamical regimes can be explained in terms of the symmetry of interactions between different antigenic variants. The results of this analysis are quite generic, and have wider implications for understanding the dynamics of immune escape of other parasites, as well as for the dynamics of multi-strain diseases.Comment: 21 pages, 4 figures; J. Math. Biol. (2012), Online Firs

    A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes

    Get PDF
    A Lagrangian numerical scheme for solving nonlinear degenerate Fokker{Planck equations in space dimensions d>2 is presented. It applies to a large class of nonlinear diffusion equations, whose dynamics are driven by internal energies and given external potentials, e.g. the porous medium equation and the fast diffusion equation. The key ingredient in our approach is the gradient ow structure of the dynamics. For discretization of the Lagrangian map, we use a finite subspace of linear maps in space and a variational form of the implicit Euler method in time. Thanks to that time discretisation, the fully discrete solution inherits energy estimates from the original gradient ow, and these lead to weak compactness of the trajectories in the continuous limit. Consistency is analyzed in the planar situation, d = 2. A variety of numerical experiments for the porous medium equation indicates that the scheme is well-adapted to track the growth of the solution's support
    corecore