17,307 research outputs found

    Effects of motion on jet exhaust noise from aircraft

    Get PDF
    The various problems involved in the evaluation of the jet noise field prevailing between an observer on the ground and an aircraft in flight in a typical takeoff or landing approach pattern were studied. Areas examined include: (1) literature survey and preliminary investigation, (2) propagation effects, (3) source alteration effects, and (4) investigation of verification techniques. Sixteen problem areas were identified and studied. Six follow-up programs were recommended for further work. The results and the proposed follow-on programs provide a practical general technique for predicting flyover jet noise for conventional jet nozzles

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page

    Canonical versus noncanonical equilibration dynamics of open quantum systems

    Full text link
    In statistical mechanics, any quantum system in equilibrium with its weakly coupled reservoir is described by a canonical state at the same temperature as the reservoir. Here, by studying the equilibration dynamics of a harmonic oscillator interacting with a reservoir, we evaluate microscopically the condition under which the equilibration to a canonical state is valid. It is revealed that the non-Markovian effect and the availability of a stationary state of the total system play a profound role in the equilibration. In the Markovian limit, the conventional canonical state can be recovered. In the non-Markovian regime, when the stationary state is absent, the system equilibrates to a generalized canonical state at an effective temperature; whenever the stationary state is present, the equilibrium state of the system cannot be described by any canonical state anymore. Our finding of the physical condition on such noncanonical equilibration might have significant impact on statistical physics. A physical scheme based on circuit QED is proposed to test our results

    Control and structural optimization for maneuvering large spacecraft

    Get PDF
    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment

    δ\delta meson effects on neutron stars in the modified quark-meson coupling model

    Full text link
    The properties of neutron stars are investigated by including δ\delta meson field in the Lagrangian density of modified quark-meson coupling model. The Σ\Sigma^- population with δ\delta meson is larger than that without δ\delta meson at the beginning, but it becomes smaller than that without δ\delta meson as the appearance of Ξ\Xi^-. The δ\delta meson has opposite effects on hadronic matter with or without hyperons: it softens the EOSes of hadronic matter with hyperons, while it stiffens the EOSes of pure nucleonic matter. Furthermore, the leptons and the hyperons have the similar influence on δ\delta meson effects. The δ\delta meson increases the maximum masses of neutron stars. The influence of (σ,ϕ)(\sigma^*,\phi) on the δ\delta meson effects are also investigated.Comment: 10 pages, 6 figures, 4 table

    Berry's phase contribution to the anomalous Hall effect of gadolinium

    Full text link
    When conduction electrons are forced to follow the local spin texture, the resulting Berry phase can induce an anomalous Hall effect (AHE). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the AHE may therefore resemble that of chromium dioxide and other metallic double-exchange ferromagnets. The Hall resistivity, magnetoresistance, and magnetization of single crystal gadolinium were measured in fields up to 30 T. Measurements between 2 K and 400 K are consistent with previously reported data. A scaling analysis for the Hall resistivity as a function of the magnetization suggests the presence of a Berry's-phase contribution to the anomalous Hall effect.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    Nickel Mixing in the Outer Layers of SN 1987A

    Full text link
    Supernova 1987A remains the most well-observed and well-studied supernova to date. Observations produced excellent broad-band photometric and spectroscopic coverage over a wide wavelength range at all epochs. Here, we focus on the very early spectroscopic observations. Only recently have numerical models been of sufficient detail to accurately explain the observed spectra. In SN 1987A, good agreement has been found between observed and synthetic spectra for day one, but by day four, the predicted Balmer lines become much weaker than the observed lines. We present the results of work based on a radiation-hydrodynamic model by Blinnikov and collaborators. Synthetic non-LTE spectra generated from this model by the general radiation transfer code PHOENIX strongly support the theory that significant mixing of nickel into the outer envelope is required to maintain strong Balmer lines. Preliminary results suggest a lower limit to the average nickel mass of 1.0 \times 10^{-5} solar masses is required above 5000 \kmps by day four. PHOENIX models thus have the potential to be a sensitive probe for nickel mixing in the outer layers of a supernova.Comment: 16 pages, 7 figures, ApJ, v556 2001 (in press

    The Solar Neighborhood XV: Discovery of New High Proper Motion Stars with mu >= 0.4"/yr between Declinations -47 degrees and 00 degrees

    Full text link
    We report the discovery of 152 new high proper motion systems (mu >= 0.4"/yr) in the southern sky (Declination = -47 degrees to 00 degrees) brighter than UKST plate R_{59F} =16.5 via our SuperCOSMOS-RECONS (SCR) search. This paper complements Paper XII in The Solar Neighborhood series, which covered the region from Declination = -90 degrees to -47 degrees and discussed all 147 new systems from the southernmost phase of the search. Among the total of 299 systems from both papers, there are 148 (71 in Paper XII, 77 in this paper) new systems moving faster than 0.5"/yr that are additions to the classic ``LHS'' (Luyten Half Second) sample. These constitute an 8% increase in the sample of all stellar systems with mu >= 0.5"/yr in the southern sky. As in Paper XII, distance estimates are provided for the systems reported here based upon a combination of photographic plate magnitudes and 2MASS photometry, assuming all stars are on the main sequence. Two SCR systems from the portion of the sky included in this paper are anticipated to be within 10 pc, and an additional 23 are within 25 pc. In total, the results presented in Paper XII and here for this SCR sweep of the entire southern sky include five new systems within 10 pc and 38 more between 10 and 25 pc. The largest number of nearby systems have been found in the slowest proper motion bin, 0.6"/yr > mu >= 0.4"/yr, indicating that there may be a large population of low proper motion systems very near the Sun.Comment: 36 pages, 5 figures, accepted for publication in Astronomical Journa

    Molecular dynamics study of the fragmentation of silicon doped fullerenes

    Full text link
    Tight binding molecular dynamics simulations, with a non orthogonal basis set, are performed to study the fragmentation of carbon fullerenes doped with up to six silicon atoms. Both substitutional and adsorbed cases are considered. The fragmentation process is simulated starting from the equilibrium configuration in each case and imposing a high initial temperature to the atoms. Kinetic energy quickly converts into potential energy, so that the system oscillates for some picoseconds and eventually breaks up. The most probable first event for substituted fullerenes is the ejection of a C2 molecule, another very frequent event being that one Si atom goes to an adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they have four or more atoms, while the smaller ones tend to dissociate and sometimes interchange positions with the C atoms. These results are compared with experimental information from mass abundance spectroscopy and the products of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in Physical Review

    Breakdown of the lattice polaron picture in La0.7Ca0.3MnO3 single crystals

    Full text link
    When heated through the magnetic transition at Tc, La0.7Ca0.3MnO3 changes from a band metal to a polaronic insulator. The Hall constant R_H, through its activated behavior and sign anomaly, provides key evidence for polaronic behavior. We use R_H and the Hall mobility to demonstrate the breakdown of the polaron phase. Above 1.4Tc, the polaron picture holds in detail, while below, the activation energies of both R_H and the mobility deviate strongly from their polaronic values. These changes reflect the presence of metallic, ferromagnetic fluctuations, in the volume of which the Hall effect develops additional contributions tied to quantal phases.Comment: 11 pages, 3 figures, final version to appear in Phys. Rev. B Rapi
    corecore