15,634 research outputs found
Implementation of a herd management system with wireless sensor networks
This paper investigates an adaptation of Wireless Sensor Networks (WSNs) to cattle monitoring applications. The proposed solution facilitates the requirement for continuously assessing the condition of individual animals, aggregating and reporting this data to the farm manager. There are several existing approaches to achieving animal monitoring, ranging from using a store and forward mechanism to employing GSM-based techniques; these approaches only provide sporadic information and introduce a considerable cost in staffing and physical hardware. The core of this study is to overcome the aforementioned drawbacks by using alternative cheap, low power consumption sensor nodes capable of providing real-time communication at a reasonable hardware cost. In this paper, both the hardware and software has been designed to provide a solution which can obtain real-time data from dairy cattle whilst conforming to the limitations associated with WSNs implementations
Positioning system for wireless sensor networks with location fingerprinting
Wireless sensor networks (WSN) are networks that deploy hundreds or thousands of wireless sensors in a pre-defined area that can communicate with each other to detect, for example the ambient environment. Each sensor is composed of the four basic elements: transmitting unit, processing unit, power unit and sensing unit. The main task of each sensor is to detect events, perform a restricted set of local data processing tasks and then transmit the data. This technology still in its early stage new researches are being conducted intensively in MAC protocols, network and routing layer, and adaptation into various domains applications. In this proposal, the focus is placed to investigate algorithms in mapping the location of sensor nodes. Knowing the location of the sensor node is critically important; the knowledge of the location of the sensor node that reported a detected event can reduce the time for assistants reaching to the outbreak point. This can potentially save life or can bring the outbreak event under control in shortest time. As the sensor node's physical hardware is mainly comprises of low specification and low cost componentry to facilitate mass production hence affordable to be applied intensively in monitoring zone. This has created a tough challenge in mapping the locations of sensor nodes as the hard-ware can not provide precise timing in calculating time of flight of a packet which is an important parameter in estimating distance between transmitting node and receiving node. In general the sensor node is only equipped with a single antenna which has also rule out the possibility of using techniques rely on angle of arrival packet. Therefore, the research is limited to use the received signal strength as the main source in estimating the travelling distance for the received packet. This paper investigates positioning algorithms that based on received signal strength i.e., location fingerprinting. In positioning systems, location fingerprinting is also referred as pattern matching of radio signature. The advantages of using RF fingerprinting are it does not require any hardware modifications to the sensor node and in comparison to other algorithms it is immune environmental influences that caused signal attenuation such as multipath, fading, reflection, non line of sight, and etc. This paper focuses on challenges that relate specifically to the location mapping of wireless sensor node including radio propagation of low specification WSN hardware, accuracy, operational range and impact of environmental factors. The optimized positioning system for WSN is documented, and results gained from experiment based on IEEE 802.15.4 WSN platform is provided
Emergence of skew distributions in controlled growth processes
Starting from a master equation, we derive the evolution equation for the
size distribution of elements in an evolving system, where each element can
grow, divide into two, and produce new elements. We then probe general
solutions of the evolution quation, to obtain such skew distributions as
power-law, log-normal, and Weibull distributions, depending on the growth or
division and production. Specifically, repeated production of elements of
uniform size leads to power-law distributions, whereas production of elements
with the size distributed according to the current distribution as well as no
production of new elements results in log-normal distributions. Finally,
division into two, or binary fission, bears Weibull distributions. Numerical
simulations are also carried out, confirming the validity of the obtained
solutions.Comment: 9 pages, 3 figure
Safely dissolvable and healable active packaging films based on alginate and pectin
Extensive usage of long-lasting petroleum based plastics for short-lived application such as packaging has raised concerns regarding their role in environmental pollution. In this research, we have developed active, healable, and safely dissolvable alginate-pectin based biocomposites that have potential applications in food packaging. The morphological study revealed the rough surface of these biocomposite films. Tensile properties indicated that the fabricated samples have mechanical properties in the range of commercially available packaging films while possessing excellent healing effciency. Biocomposite films exhibited higher hydrophobicity properties compared to neat alginate films. Thermal analysis indicated that crosslinked biocomposite samples possess higher thermal stability in temperatures below 120 °C, while antibacterial analysis against E. coli and S. aureus revealed the antibacterial properties of the prepared samples against different bacteria. The fabricated biodegradable multi-functional biocomposite films possess various imperative properties, making them ideal for utilization as packaging material
The incidence of congenital syphilis in the United Kingdom: February 2010 to January 2015
OBJECTIVE: To estimate the incidence of congenital syphilis in the UK. DESIGN: Prospective study. SETTING AND POPULATION: United Kingdom. METHODS: Children born between February 2010 and January 2015 with a suspected diagnosis of congenital syphilis were reported through an active surveillance system. MAIN OUTCOME MEASURES: Number of congenital syphilis cases and incidence. RESULTS: For all years, reported incidence was below the WHO threshold for elimination (<0.5/1000 live births). Seventeen cases (12 male, five female) were identified. About 50% of infants (8/17) were born preterm (<37 weeks' gestation): median birthweight 2000 g (865-3170 g). Clinical presentation varied from asymptomatic to acute disease, including severe anaemia, hepatosplenomegaly, rhinitis, thrombocytopaenia, skeletal damage, and neurosyphilis. One infant was deaf and blind. Median maternal age was 20 years (17-31) at delivery. Where maternal stage of infection was recorded, 6/10 had primary, 3/10 secondary and 1/10 early latent syphilis. Most mothers were white (13/16). Country of birth was recorded for 12 mothers: UK (n = 6), Eastern Europe (n = 3), Middle East (n = 1), and South East Asia (n = 2). The social circumstances of mothers varied and included drug use and sex work. Some experienced difficulty accessing health care. CONCLUSION: The incidence of congenital syphilis is controlled and monitored by healthcare services and related surveillance systems, and is now below the WHO elimination threshold. However, reducing the public health impact of this preventable disease in the UK is highly dependent on the successful implementation of WHO elimination standards across Europe. TWEETABLE ABSTRACT: Congenital syphilis incidence in the UK is at a very low level and well below the WHO elimination threshold
Fermi-Surface Reconstruction in the Periodic Anderson Model
We study ground state properties of periodic Anderson model in a
two-dimensional square lattice with variational Monte Carlo method. It is shown
that there are two different types of quantum phase transition: a conventional
antiferromagnetic transition and a Fermi-surface reconstruction which
accompanies a change of topology of the Fermi surface. The former is induced by
a simple back-folding of the Fermi surface while the latter is induced by
localization of electrons. The mechanism of these transitions and the
relation to the recent experiments on Fermi surface are discussed in detail.Comment: 8 pages, 7 figures, submitted to Journal of the Physical Society of
Japa
Teleportation of continuous quantum variables using squeezed-state entanglement
We report recent developments in our experiment to teleport light beams by utilizing Einstein-Podolsky-Rosen (EPR) entanglement for continuous quantum variables. We describe details of our experimental apparatus, including the generation of EPR entanglement from squeezed states of light. In addition, we have developed an explicit model for the teleportation of coherent states that includes the effect of diverse loss factors and limited degrees of entanglement, and that enables us to project the possibilities for achieving yet higher fidelities beyond the currently achieved value of 62% with our apparatus. Propects for other teleportation schemes will also be discussed
Chemical Pressure and Physical Pressure in BaFe_2(As_{1-x}P_{x})_2
Measurements of the superconducting transition temperature, T_c, under
hydrostatic pressure via bulk AC susceptibility were carried out on several
concentrations of phosphorous substitution in BaFe_2(As_{1-x}P_x)_2. The
pressure dependence of unsubstituted BaFe_2As_2, phosphorous concentration
dependence of BaFe_2(As_{1-x}P_x)_2, as well as the pressure dependence of
BaFe_2(As_{1-x}P_x)_2 all point towards an identical maximum T_c of 31 K. This
demonstrates that phosphorous substitution and physical pressure result in
similar superconducting phase diagrams, and that phosphorous substitution does
not induce substantial impurity scattering.Comment: 5 pages, 4 figures, to be published in Journal of the Physical
Society of Japa
Domain Growth, Wetting and Scaling in Porous Media
The lattice Boltzmann (LB) method is used to study the kinetics of domain
growth of a binary fluid in a number of geometries modeling porous media.
Unlike the traditional methods which solve the Cahn-Hilliard equation, the LB
method correctly simulates fluid properties, phase segregation, interface
dynamics and wetting. Our results, based on lattice sizes of up to , do not show evidence to indicate the breakdown of late stage dynamical
scaling, and suggest that confinement of the fluid is the key to the slow
kinetics observed. Randomness of the pore structure appears unnecessary.Comment: 13 pages, latex, submitted to PR
- …
