49,302 research outputs found

    The magnetic dipole transitions in the (cbˉ)(c\bar{b}) binding system

    Full text link
    The magnetic dipole transitions between the vector mesons BcB_c^* and their relevant pseudoscalar mesons BcB_c (BcB_c, BcB_c^*, Bc(2S)B_c(2S), Bc(2S)B_c^*(2S), Bc(3S)B_c(3S) and Bc(3S)B_c^*(3S) etc, the binding states of (cbˉ)(c\bar{b}) system) of the BcB_c family are interesting. To see the `hyperfine' splitting due to spin-spin interaction is an important topic for understanding the spin-spin interaction and the spectrum of the the (cbˉ)(c\bar{b}) binding system. The knowledge about the magnetic dipole transitions is also very useful for identifying the vector boson BcB_c^* mesons experimentally, whose masses are just slightly above the masses of their relevant pseudoscalar mesons BcB_c accordingly. Considering the possibility to observe the vector mesons via the transitions at Z0Z^0 factory and the potentially usages of the theoretical estimate on the transitions, we fucus our efforts on calculating the magnetic dipole transitions, i.e. precisely to calculate the rates for the transitions such as decays BcBcγB_c^*\to B_c\gamma and BcBce+eB_c^*\to B_c e^+e^-, and particularly work in the Behte-Salpeter framework. In the estimate, as a typical example, we carefully investigate the dependance of the rate Γ(BcBcγ)\Gamma(B_c^*\to B_c\gamma) on the mass difference ΔM=MBcMBc\Delta M=M_{B_c^*}-M_{B_c} as well.Comment: 10 pages, 2 figures, 1 tabl

    A general condition of inflationary cosmology on trans-Planckian physics

    Full text link
    We consider a more general initial condition satisfying the minimal uncertainty relationship. We calculate the power spectrum of a simple model in inflationary cosmology. The results depend on perturbations generated below a fundamental scale, e.g. the Planck scale.Comment: 7 pages, References adde

    Search for Bc(ns)B_c(ns) via the Bc(ns)Bc(ms)π+πB_c(ns)\to B_c(ms)\pi^+\pi^- transition at LHCb and Z0Z_0 factory

    Full text link
    It is interesting to study the characteristics of the whole family of BcB_c which contains two different heavy flavors. LHC and the proposed Z0Z^0 factory provide an opportunity because a large database on the BcB_c family will be achieved. BcB_c and its excited states can be identified via their decay modes. As suggested by experimentalists, Bc(ns)Bc+γB_c^*(ns)\to B_c+\gamma is not easy to be clearly measured, instead, the trajectories of π+\pi^+ and π\pi^- occurring in the decay of Bc(ns)Bc(ms)+π+πB_c(ns)\to B_c(ms)+\pi^+\pi^- (n>mn>m) can be unambiguously identified, thus the measurement seems easier and more reliable, therefore this mode is more favorable at early running stage of LHCb and the proposed Z0Z^0 factory. In this work, we calculate the rate of Bc(ns)Bc(ms)+π+πB_c(ns)\to B_c(ms)+\pi^+\pi^- in terms of the QCD multipole-expansion and the numerical results indicate that the experimental measurements with the luminosity of LHC and Z0Z^0 factory are feasible.Comment: 12 pages, 1 figures and 4 tables, acceptted by SCIENCE CHINA Physics, Mechanics & Astronomy (Science in China Series G

    Extraction of Plumes in Turbulent Thermal Convection

    Full text link
    We present a scheme to extract information about plumes, a prominent coherent structure in turbulent thermal convection, from simultaneous local velocity and temperature measurements. Using this scheme, we study the temperature dependence of the plume velocity and understand the results using the equations of motion. We further obtain the average local heat flux in the vertical direction at the cell center. Our result shows that heat is not mainly transported through the central region but instead through the regions near the sidewalls of the convection cell.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    From Canonical to Enhanced Extra Mixing in Low-Mass Red Giants: Tidally Locked Binaries

    Get PDF
    Stellar models which incorporate simple diffusion or shear induced mixing are used to describe canonical extra mixing in low mass red giants of low and solar metallicity. These models are able to simultaneously explain the observed Li and CN abundance changes along upper red giant branch (RGB) in field low-metallicity stars and match photometry, rotation and carbon isotopic ratios for stars in the old open cluster M67. The shear mixing model requires that main sequence (MS) progenitors of upper RGB stars possessed rapidly rotating radiative cores and that specific angular momentum was conserved in each of their mass shells during their evolution. We surmise that solar-type stars will not experience canonical extra mixing on the RGB because their more efficient MS spin-down resulted in solid-body rotation, as revealed by helioseismological data for the Sun. Thus, RGB stars in the old, high metallicity cluster NGC 6791 should show no evidence for mixing in their carbon isotopic ratios. We develop the idea that canonical extra mixing in a giant component of a binary system may be switched to its enhanced mode with much faster and somewhat deeper mixing as a result of the giant's tidal spin-up. This scenario can explain photometric and composition peculiarities of RS CVn binaries. The tidally enforced enhanced extra mixing might contribute to the star-to-star abundance variations of O, Na and Al in globular clusters. This idea may be tested with observations of carbon isotopic ratios and CN abundances in RS CVn binaries.Comment: 47 pages, 19 figures, accepted for publication in Ap

    Electron Transport Through Molecules: Self-consistent and Non-self-consistent Approaches

    Full text link
    A self-consistent method for calculating electron transport through a molecular device is proposed. It is based on density functional theory electronic structure calculations under periodic boundary conditions and implemented in the framework of the nonequilibrium Green function approach. To avoid the substantial computational cost in finding the I-V characteristic of large systems, we also develop an approximate but much more efficient non-self-consistent method. Here the change in effective potential in the device region caused by a bias is approximated by the main features of the voltage drop. As applications, the I-V curves of a carbon chain and an aluminum chain sandwiched between two aluminum electrodes are calculated -- two systems in which the voltage drops very differently. By comparing to the self-consistent results, we show that this non-self-consistent approach works well and can give quantitatively good results.Comment: 11 pages, 10 figure
    corecore