26,810 research outputs found
Reentrant Melting of Soliton Lattice Phase in Bilayer Quantum Hall System
At large parallel magnetic field , the ground state of bilayer
quantum Hall system forms uniform soliton lattice phase. The soliton lattice
will melt due to the proliferation of unbound dislocations at certain finite
temperature leading to the Kosterlitz-Thouless (KT) melting. We calculate the
KT phase boundary by numerically solving the newly developed set of Bethe
ansatz equations, which fully take into account the thermal fluctuations of
soliton walls. We predict that within certain ranges of , the
soliton lattice will melt at . Interestingly enough, as temperature
decreases, it melts at certain temperature lower than exhibiting
the reentrant behaviour of the soliton liquid phase.Comment: 11 pages, 2 figure
Recommended from our members
Polyamide 11-Carbon Nanotubes Nanocomposites: Preliminary Investigation
The objective of this research is to develop an improved polyamide 11 (PA11) polymer with
enhanced flame retardancy, thermal, and mechanical properties for selective laser sintering
(SLS) rapid manufacturing. In the present study, a nanophase was introduced into polyamide 11
via twin screw extrusion. Arkema Rilsan® polyamide 11 molding polymer pellets were used
with 1, 3, 5, and 7 wt% loadings of Arkema’s GraphistrengthTM multi-wall carbon nanotubes
(MWNTs) to create a family of PA11-MWNT nanocomposites.
Transmission electron microscopy and scanning electron microscopy were used to determine
the degree and uniformity of dispersion. Injection molded test specimens were fabricated for
physical, thermal, mechanical properties, and flammability measurements. Thermal stability of
these polyamide 11-MWNT nanocomposites was examined by TGA. Mechanical properties such
as ultimate tensile strength, rupture tensile strength, and elongation at rupture were measured.
Flammability properties were also obtained using the UL 94 test method. All these different
methods and subsequent polymer characteristics are discussed in this paper.Mechanical Engineerin
Compaction and dilation rate dependence of stresses in gas-fluidized beds
A particle dynamics-based hybrid model, consisting of monodisperse spherical
solid particles and volume-averaged gas hydrodynamics, is used to study
traveling planar waves (one-dimensional traveling waves) of voids formed in
gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging
in a co-traveling frame, we compute solid phase continuum variables (local
volume fraction, average velocity, stress tensor, and granular temperature)
across the waves, and examine the relations among them. We probe the
consistency between such computationally obtained relations and constitutive
models in the kinetic theory for granular materials which are widely used in
the two-fluid modeling approach to fluidized beds. We demonstrate that solid
phase continuum variables exhibit appreciable ``path dependence'', which is not
captured by the commonly used kinetic theory-based models. We show that this
path dependence is associated with the large rates of dilation and compaction
that occur in the wave. We also examine the relations among solid phase
continuum variables in beds of cohesive particles, which yield the same path
dependence. Our results both for beds of cohesive and non-cohesive particles
suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect
analysis added
Anomalous Exponent of the Spin Correlation Function of a Quantum Hall Edge
The charge and spin correlation functions of partially spin-polarized edge
electrons of a quantum Hall bar are studied using effective Hamiltonian and
bosonization techniques. In the presence of the Coulomb interaction between the
edges with opposite chirality we find a different crossover behavior in spin
and charge correlation functions. The crossover of the spin correlation
function in the Coulomb dominated regime is characterized by an anomalous
exponent, which originates from the finite value of the effective interaction
for the spin degree of freedom in the long wavelength limit. The anomalous
exponent may be determined by measuring nuclear spin relaxation rates in a
narrow quantum Hall bar or in a quantum wire in strong magnetic fields.Comment: 4 pages, Revtex file, no figures. To appear in Physical Revews B,
Rapid communication
Thermodynamic Phase Diagram of the Quantum Hall Skyrmion System
We numerically study the interacting quantum Hall skyrmion system based on
the Chern-Simons action. By noticing that the action is invariant under global
spin rotations in the spin space with respect to the magnetic field direction,
we obtain the low-energy effective action for a many skyrmion system.
Performing extensive molecular dynamics simulations, we establish the
thermodynamic phase diagram for a many skyrmion system.Comment: 4 pages, RevTex, 2 postscript figure
Time-delayed Spatial Patterns in a Two-dimensional Array of Coupled Oscillators
We investigated the effect of time delays on phase configurations in a set of
two-dimensional coupled phase oscillators. Each oscillator is allowed to
interact with its neighbors located within a finite radius, which serves as a
control parameter in this study. It is found that distance-dependent
time-delays induce various patterns including traveling rolls, square-like and
rhombus-like patterns, spirals, and targets. We analyzed the stability
boundaries of the emerging patterns and briefly pointed out the possible
empirical implications of such time-delayed patterns.Comment: 5 Figure
Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian-Wishart processes
Functional data are defined as realizations of random functions (mostly
smooth functions) varying over a continuum, which are usually collected with
measurement errors on discretized grids. In order to accurately smooth noisy
functional observations and deal with the issue of high-dimensional observation
grids, we propose a novel Bayesian method based on the Bayesian hierarchical
model with a Gaussian-Wishart process prior and basis function representations.
We first derive an induced model for the basis-function coefficients of the
functional data, and then use this model to conduct posterior inference through
Markov chain Monte Carlo. Compared to the standard Bayesian inference that
suffers serious computational burden and unstableness for analyzing
high-dimensional functional data, our method greatly improves the computational
scalability and stability, while inheriting the advantage of simultaneously
smoothing raw observations and estimating the mean-covariance functions in a
nonparametric way. In addition, our method can naturally handle functional data
observed on random or uncommon grids. Simulation and real studies demonstrate
that our method produces similar results as the standard Bayesian inference
with low-dimensional common grids, while efficiently smoothing and estimating
functional data with random and high-dimensional observation grids where the
standard Bayesian inference fails. In conclusion, our method can efficiently
smooth and estimate high-dimensional functional data, providing one way to
resolve the curse of dimensionality for Bayesian functional data analysis with
Gaussian-Wishart processes.Comment: Under revie
- …
