5,779 research outputs found
Recommended from our members
Global Optimization Of Quasi-Monoenergetic Electron Beams From Laser Wakefield Accelerators
We globally optimize a terawatt-laser-driven wakefield accelerator by systematically varying laser and target parameters to achieve 100 MeV electrons, 10% energy spread, 100 pC charge, 4 mrad divergence and 10 mrad pointing fluctuation with similar to 100% reproducibility, thereby meeting conditions for producing similar to 10(6) 200 keV X-ray photons/pulse by inverse Compton scatter.Physic
Zero Temperature Insulator-Metal Transition in Doped Manganites
We study the transition at T=0 from a ferromagnetic insulating to a
ferromagnetic metallic phase in manganites as a function of hole doping using
an effective low-energy model Hamiltonian proposed by us recently. The model
incorporates the quantum nature of the dynamic Jahn-Teller(JT) phonons strongly
coupled to orbitally degenerate electrons as well as strong Coulomb correlation
effects and leads naturally to the coexistence of localized (JT polaronic) and
band-like electronic states. We study the insulator-metal transition as a
function of doping as well as of the correlation strength U and JT gain in
energy E_{JT}, and find, for realistic values of parameters, a ground state
phase diagram in agreement with experiments. We also discuss how several other
features of manganites as well as differences in behaviour among manganites can
be understood in terms of our model.Comment: To be published in Europhysics Letter
Modeling programming knowledge for mentoring at scale
In large programming classes, MOOCs or online communities, it is challenging to find peers and mentors to help with learning specific programming concepts. In this paper we present first steps towards an automated, scalable system for matching learners with Python programmers who have expertise in different areas. The learner matching system builds a knowledge model for each programmer by analyzing their authored code and extracting features that capture domain knowledge and style. We demonstrate the feasibility of a simple model that counts the references to modules from the standard library and Python Package Index in a programmers' code. We also show that programmers exhibit self-selection using which we can extract the modules a programmer is best at, even though we may not have all of their code. In our future work we aim to extend the model to encapsulate more features, and apply it for skill matching in a programming class as well as personalizing answers on StackOverflow.Massachusetts Institute of Technology. Undergraduate Research Opportunities Progra
The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects
We measure the Casimir force between a gold sphere and a silicon plate with
nanoscale, rectangular corrugations with depth comparable to the separation
between the surfaces. In the proximity force approximation (PFA), both the top
and bottom surfaces of the corrugations contribute to the force, leading to a
distance dependence that is distinct from a flat surface. The measured Casimir
force is found to deviate from the PFA by up to 15%, in good agreement with
calculations based on scattering theory that includes both geometry effects and
the optical properties of the material
Unique gap structure and symmetry of the charge density wave in single-layer VSe
Single layers of transition metal dichalcogenides (TMDCs) are excellent
candidates for electronic applications beyond the graphene platform; many of
them exhibit novel properties including charge density waves (CDWs) and
magnetic ordering. CDWs in these single layers are generally a planar
projection of the corresponding bulk CDWs because of the quasi-two-dimensional
nature of TMDCs; a different CDW symmetry is unexpected. We report herein the
successful creation of pristine single-layer VSe, which shows a () CDW in contrast to the (4 4) CDW for the layers in
bulk VSe. Angle-resolved photoemission spectroscopy (ARPES) from the single
layer shows a sizable () CDW gap of 100 meV at the
zone boundary, a 220 K CDW transition temperature twice the bulk value, and no
ferromagnetic exchange splitting as predicted by theory. This robust CDW with
an exotic broken symmetry as the ground state is explained via a
first-principles analysis. The results illustrate a unique CDW phenomenon in
the two-dimensional limit
- …
