50,076 research outputs found
Squeeze-film gas bearing technology
Squeeze-film bearing is studied to develop a low-friction suspension for the output-axis gimbal of a single-degree-of-freedom gyroscope. Included are a review of pertinent literature, the theory of squeeze-film lubrication, and design elements
On asymptotic analysis of gaseous squeeze-film bearings
Asymptotic analysis for obtaining steady state solution of time dependent gas lubrication equation, of diffusion type, for gaseous squeeze film bearing
Tuning electronic structure of graphene via tailoring structure: theoretical study
Electronic structures of graphene sheet with different defective patterns are
investigated, based on the first principles calculations. We find that
defective patterns can tune the electronic structures of the graphene
significantly. Triangle patterns give rise to strongly localized states near
the Fermi level, and hexagonal patterns open up band gaps in the systems. In
addition, rectangular patterns, which feature networks of graphene nanoribbons
with either zigzag or armchair edges, exhibit semiconducting behaviors, where
the band gap has an evident dependence on the width of the nanoribbons. For the
networks of the graphene nanoribbons, some special channels for electronic
transport are predicted.Comment: 5 figures, 6 page
Investigation of an axial-excursion transducer for squeeze-film bearings
Resonant frequencies and characteristic bearing cone motion of axial-excursion transducer for squeeze-film gas bearing - drive voltage, preload, bearing mass, and mounting ring effect
The solution of special squeeze film gas bearing problems by an improved numerical technique
Computer program for solving squeeze film gas bearing problem
On the slowly time dependent problem of squeeze film bearings
Time dependency of spherical squeeze-film bearing for use in suspension of precision gyroscope outpu
Quantum interference in dirty d-wave superconductors
The local differential tunneling conductance on a Zn impurity in a disordered
d-wave superconductors is studied. Quantum interference between many impurities
leads to definitive quasiparticle spectra. We suggest that an elaborate
analysis on impurity-induced spectra with quantum interference effect included
may be able to pin down the sign and strength of the scattering potential of a
Zn impurity in low density limit. Numerical simulations calculated with
appropriately determined impurity parameters are in satisfactory agreement with
the observations from scanning tunneling microscopy (STM) experiments even in
subtle details
On Error Torques of Squeeze-film Cylindrical Journal Bearings
Error torques of squeeze film cylindrical journal bearing
Prototypical Contrastive Learning of Unsupervised Representations
This paper presents Prototypical Contrastive Learning (PCL), an unsupervised
representation learning method that addresses the fundamental limitations of
instance-wise contrastive learning. PCL not only learns low-level features for
the task of instance discrimination, but more importantly, it implicitly
encodes semantic structures of the data into the learned embedding space.
Specifically, we introduce prototypes as latent variables to help find the
maximum-likelihood estimation of the network parameters in an
Expectation-Maximization framework. We iteratively perform E-step as finding
the distribution of prototypes via clustering and M-step as optimizing the
network via contrastive learning. We propose ProtoNCE loss, a generalized
version of the InfoNCE loss for contrastive learning, which encourages
representations to be closer to their assigned prototypes. PCL outperforms
state-of-the-art instance-wise contrastive learning methods on multiple
benchmarks with substantial improvement in low-resource transfer learning. Code
and pretrained models are available at https://github.com/salesforce/PCL
- …
