21,978 research outputs found

    Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms

    Full text link
    In this paper, we present two alternative approaches to defining answer sets for logic programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches generalize the fixpoint-based and the level mapping based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of c-atoms. The results are four different answer set definitions which are equivalent when applied to normal logic programs. The standard fixpoint-based semantics of logic programs is generalized in two directions, called answer set by reduct and answer set by complement. These definitions, which differ from each other in the treatment of negation-as-failure (naf) atoms, make use of an immediate consequence operator to perform answer set checking, whose definition relies on the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other two definitions, called strongly and weakly well-supported models, are generalizations of the notion of well-supported models of normal logic programs to the case of programs with c-atoms. As for the case of fixpoint-based semantics, the difference between these two definitions is rooted in the treatment of naf atoms. We prove that answer sets by reduct (resp. by complement) are equivalent to weakly (resp. strongly) well-supported models of a program, thus generalizing the theorem on the correspondence between stable models and well-supported models of a normal logic program to the class of programs with c-atoms. We show that the newly defined semantics coincide with previously introduced semantics for logic programs with monotone c-atoms, and they extend the original answer set semantics of normal logic programs. We also study some properties of answer sets of programs with c-atoms, and relate our definitions to several semantics for logic programs with aggregates presented in the literature

    Radiance and Doppler shift distributions across the network of the quiet Sun

    Full text link
    The radiance and Doppler-shift distributions across the solar network provide observational constraints of two-dimensional modeling of transition-region emission and flows in coronal funnels. Two different methods, dispersion plots and average-profile studies, were applied to investigate these distributions. In the dispersion plots, we divided the entire scanned region into a bright and a dark part according to an image of Fe xii; we plotted intensities and Doppler shifts in each bin as determined according to a filtered intensity of Si ii. We also studied the difference in height variations of the magnetic field as extrapolated from the MDI magnetogram, in and outside network. For the average-profile study, we selected 74 individual cases and derived the average profiles of intensities and Doppler shifts across the network. The dispersion plots reveal that the intensities of Si ii and C iv increase from network boundary to network center in both parts. However, the intensity of Ne viii shows different trends, namely increasing in the bright part and decreasing in the dark part. In both parts, the Doppler shift of C iv increases steadily from internetwork to network center. The average-profile study reveals that the intensities of the three lines all decline from the network center to internetwork region. The binned intensities of Si ii and Ne viii have a good correlation. We also find that the large blue shift of Ne viii does not coincide with large red shift of C iv. Our results suggest that the network structure is still prominent at the layer where Ne viii is formed in the quiet Sun, and that the magnetic structures expand more strongly in the dark part than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure

    Upflows in the upper transition region of the quiet Sun

    Full text link
    We investigate the physical meaning of the prominent blue shifts of Ne VIII, which is observed to be associated with quiet-Sun network junctions (boundary intersections), through data analyses combining force-free-field extrapolations with EUV spectroscopic observations. For a middle-latitude region, we reconstruct the magnetic funnel structure in a sub-region showing faint emission in EIT-Fe 195. This funnel appears to consist of several smaller funnels that originate from network lanes, expand with height and finally merge into a single wide open-field region. However, the large blue shifts of Ne VIII are generally not associated with open fields, but seem to be associated with the legs of closed magnetic loops. Moreover, in most cases significant upflows are found in both of the funnel-shaped loop legs. These quasi-steady upflows are regarded as signatures of mass supply to the coronal loops rather than the solar wind. Our observational result also reveals that in many cases the upflows in the upper transition region (TR) and the downflows in the middle TR are not fully cospatial. Based on these new observational results, we suggest different TR structures in coronal holes and in the quiet Sun.Comment: 4 pages, 4 figures, will appear in the Proceedings of the Solar wind 12 conferenc

    Optical properties of the iron-arsenic superconductor BaFe1.85Co0.15As2

    Full text link
    The transport and complex optical properties of the electron-doped iron-arsenic superconductor BaFe1.85Co0.15As2 with Tc = 25 K have been examined in the Fe-As planes above and below Tc. A Bloch-Gruneisen analysis of the resistivity yields a weak electron-phonon coupling constant lambda_ph ~ 0.2. The low-frequency optical response in the normal state appears to be dominated by the electron pocket and may be described by a weakly-interacting Fermi liquid with a Drude plasma frequency of omega_p,D ~ 7840 cm-1 (~ 0.972 eV) and scattering rate 1/tau_D ~ 125 cm-1 (~ 15 meV) just above Tc. The frequency-dependent scattering rate 1/tau(omega) has kinks at ~ 12 and 55 meV that appear to be related to bosonic excitations. Below Tc the majority of the superconducting plasma frequency originates from the electron pocket and is estimated to be omega_p,S ~ 5200 cm-1 (lambda0 ~ 3000 Angstroms) for T << Tc, indicating that less than half the free carriers in the normal state have collapsed into the condensate, suggesting that this material is not in the clean limit. Supporting this finding is the observation that this material falls close to the universal scaling line for a BCS dirty-limit superconductor in the weak-coupling limit. There are two energy scales for the superconductivity in the optical conductivity and photo-induced reflectivity at Delta1 ~ 3.1 +/- 0.2 meV and Delta2 ~ 7.4 +/- 0.3 meV. This corresponds to either the gaping of the electron and hole pockets, respectively, or an anisotropic s-wave gap on the electron pocket; both views are consistent with the s+/- model.Comment: Revised version (expanded discussion, additional references): 11 pages, one table and 8 figure

    Observation of an in-plane magnetic-field-driven phase transition in a quantum Hall system with SU(4) symmetry

    Full text link
    In condensed matter physics, the study of electronic states with SU(N) symmetry has attracted considerable and growing attention in recent years, as systems with such a symmetry can often have a spontaneous symmetry-breaking effect giving rise to a novel ground state. For example, pseudospin quantum Hall ferromagnet of broken SU(2) symmetry has been realized by bringing two Landau levels close to degeneracy in a bilayer quantum Hall system. In the past several years, the exploration of collective states in other multi-component quantum Hall systems has emerged. Here we show the conventional pseudospin quantum Hall ferromagnetic states with broken SU(2) symmetry collapsed rapidly into an unexpected state with broken SU(4) symmetry, by in-plane magnetic field in a two-subband GaAs/AlGaAs two-dimensional electron system at filling factor around ν=4\nu=4. Within a narrow tilting range angle of 0.5 degrees, the activation energy increases as much as 12 K. While the origin of this puzzling observation remains to be exploited, we discuss the possibility of a long-sought pairing state of electrons with a four-fold degeneracy.Comment: 13 pages, 4 figure

    Probing Quantum Hall Pseudospin Ferromagnet by Resistively Detected NMR

    Full text link
    Resistively Detected Nuclear Magnetic Resonance (RD-NMR) has been used to investigate a two-subband electron system in a regime where quantum Hall pseudo-spin ferromagnetic (QHPF) states are prominently developed. It reveals that the easy-axis QHPF state around the total filling factor ν=4\nu =4 can be detected by the RD-NMR measurement. Approaching one of the Landau level (LL) crossing points, the RD-NMR signal strength and the nuclear spin relaxation rate 1/T11/T_{1} enhance significantly, a signature of low energy spin excitations. However, the RD-NMR signal at another identical LL crossing point is surprisingly missing which presents a puzzle

    Phonon anomaly in BaFe2As2

    Full text link
    The detailed optical properties of BaFe2As2 have been determined over a wide frequency range above and below the structural and magnetic transition at T_N = 138 K. A prominent in-plane infrared-active mode is observed at 253 cm^{-1} (31.4 meV) at 295 K. The frequency of this vibration shifts discontinuously at T_N; for T < T_N the frequency of this mode displays almost no temperature dependence, yet it nearly doubles in intensity. This anomalous behavior appears to be a consequence of orbital ordering in the Fe-As layers.Comment: 4 pages, 3 figures and one table (minor revisions
    corecore