63,098 research outputs found
Experimental investigation of piloted flameholders
Four configurations of piloted flameholders were tested. The range of flame stabilization, flame propagation, pressure oscillation during ignition, and pressure drop of the configurations were determined. Some tests showed a very strong effect of inlet flow velocity profile and flameholder geometry on flame stabilization. These tests led to the following conclusions. (1) The use of a piloted flameholder in the turbofan augmentor may minimize the peak pressure rise during ignition. At the present experimental conditions, delta P/P asterisk over 2 is less than 10 percent; therefore, the use of a piloted flameholder is a good method to realize soft ignition. (2) The geometry of the piloted flameholder and the amount of fuel injected into the flameholder have a strong effect on the pressure oscillation during ignition of the fuel-air mixture in the secondary zone. (3) Compared with the V-gutter flameholder with holes in its wall, the V-gutter flameholder without holes not only has advantages such as simple structure and good rigidity but offers a wide combustion stability limit and a high capability of igniting the fuel-air mixture of the secondary zone
Metallopolymer Organohydrogels with Photo-Controlled Coordination Crosslinks Work Properly Below 0 degrees C
Optimization of sensor locations for measurement of flue gas flow in industrial ducts and stacks using neural networks
This paper presents a novel application of neural network modeling in the optimization of sensor locations for the measurement of flue gas flow in industrial ducts and stacks. The proposed neural network model has been validated with an experiment based upon a case-study power plant. The results have shown that the optimized sensor location can be easily determined with this model. The industry can directly benefit from the improvement of measurement accuracy of the flue gas flow in the optimized sensor location and the reduction of manual measurement operation with Pitot tube
Quantum tunneling through planar p-n junctions in HgTe quantum wells
We demonstrate that a p-n junction created electrically in HgTe quantum wells
with inverted band-structure exhibits interesting intraband and interband
tunneling processes. We find a perfect intraband transmission for electrons
injected perpendicularly to the interface of the p-n junction. The opacity and
transparency of electrons through the p-n junction can be tuned by changing the
incidence angle, the Fermi energy and the strength of the Rashba spin-orbit
interaction. The occurrence of a conductance plateau due to the formation of
topological edge states in a quasi-one-dimensional p-n junction can be switched
on and off by tuning the gate voltage. The spin orientation can be
substantially rotated when the samples exhibit a moderately strong Rashba
spin-orbit interaction.Comment: 4 pages, 4 figure
Transient heat generation in a quantum dot under a step-like pulse bias
We study the transient heat generation in a quantum dot system driven by a
step-like or a square-shaped pulse bias. We find that a periodically
oscillating heat generation arises after adding the sudden bias. One
particularly surprising result is that there exists a heat absorption from the
zero-temperature phonon subsystem. Thus the phonon population in
non-equilibrium can be less than that of the equilibrium electron-phonon
system. In addition, we also ascertain the optimal conditions for the operation
of a quantum dot with the minimum heat generation.Comment: 6 pages, 4 figure
- …
