20,052 research outputs found
Model-Independent Distance Measurements from Gamma-Ray Bursts and Constraints on Dark Energy
Gamma-Ray Bursts (GRB) are the most energetic events in the Universe, and
provide a complementary probe of dark energy by allowing the measurement of
cosmic expansion history that extends to redshifts greater than 6. Unlike Type
Ia supernovae (SNe Ia), GRBs must be calibrated for each cosmological model
considered, because of the lack of a nearby sample of GRBs for
model-independent calibration. For a flat Universe with a cosmological
constant, we find Omega_m=0.25^{+0.12}_{-0.11} from 69 GRBs alone. We show that
the current GRB data can be summarized by a set of model-independent distance
measurements, with negligible loss of information. We constrain a dark energy
equation of state linear in the cosmic scale factor using these distance
measurements from GRBs, together with the "Union" compilation of SNe Ia, WMAP
five year observations, and the SDSS baryon acoustic oscillation scale
measurement. We find that a cosmological constant is consistent with current
data at 68% confidence level for a flat Universe. Our results provide a simple
and robust method to incorporate GRB data in a joint analysis of cosmological
data to constrain dark energy.Comment: 8 pages, 5 color figures. Version expanded and revised for
clarification, and typo in Eqs.(3)(4)(12) corrected. PRD, in pres
Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band
A wavelength-swept thulium-doped silica fiber laser using an intracavity rotating slotted-disk wavelength scanning filter in combination with an intracavity solid etalon for passive control of temporal and spectral profiles is reported. The laser yielded a wavelength swept output in a step-wise fashion with each laser pulse separated from the previous pulse by a frequency interval equal to the free-spectral-range of the etalon and with an instantaneous linewidth of <0.05 nm. Scanning ranges from 1905 nm to 2049 nm for a cladding-pumping laser configuration, and from 1768 nm to 1956 nm for a core-pumping laser configuration were achieved at average output powers up to ~1 W
High-order volterra model predictive control and its application to a nonlinear polymerisation process
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but the existing design and implementation methods are restricted to linear process models. A chemical process involves, however, severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC), and also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design which relieves practising engineers from the need for first deriving a physical-principles based model. An on-line realisation technique for implementing the NMPC is also developed. The NMPC is then applied to a Mitsubishi Chemicals polymerisation reaction process. The results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the approach developed lie not only in control performance superior to existing NMPC methods, but also in relieving practising engineers from the need for deriving an analytical model and then converting it to a Volterra model through which the model can only be obtained up to the second order
Brane Inflation from Rotation of D4 Brane
In this paper, a inflationary model from the rotation of D4-brane is
constructed. We show that for a very wide rage of parameter, this model
satisfies the observation and find that regarded as inflaton, the rotation of
branes may be more nature than the distance between branes. Our model offers a
new avenue for brane inflation.Comment: 6 pages, no figure
Detection of a Substantial Molecular Gas Reservoir in a brightest cluster galaxy at z = 1.7
We report the detection of CO(2-1) emission coincident with the brightest
cluster galaxy (BCG) of the high-redshift galaxy cluster SpARCS1049+56, with
the Redshift Search Receiver (RSR) on the Large Millimetre Telescope (LMT). We
confirm a spectroscopic redshift for the gas of z = 1.7091+/-0.0004, which is
consistent with the systemic redshift of the cluster galaxies of z = 1.709. The
line is well-fit by a single component Gaussian with a RSR resolution-corrected
FWHM of 569+/-63 km/s. We see no evidence for multiple velocity components in
the gas, as might be expected from the multiple image components seen in
near-infrared imaging with the Hubble Space Telescope. We measure the
integrated flux of the line to be 3.6+/-0.3 Jy km/s and, using alpha_CO = 0.8
Msun (K km s^-1 pc^2)^-1 we estimate a total molecular gas mass of
1.1+/-0.1x10^11 Msun and a M_H2/M_star ~ 0.4. This is the largest gas reservoir
detected in a BCG above z > 1 to date. Given the infrared-estimated star
formation rate of 860+/-130 Msun/yr, this corresponds to a gas depletion
timescale of ~0.1Gyr. We discuss several possible mechanisms for depositing
such a large gas reservoir to the cluster center -- e.g., a cooling flow, a
major galaxy-galaxy merger or the stripping of gas from several galaxies -- but
conclude that these LMT data are not sufficient to differentiate between them.Comment: accepted for publication in ApJ Letter
CAutoCSD-evolutionary search and optimisation enabled computer automated control system design
This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of 'Computer-Aided Control System Design' (CACSD) to the novel 'Computer-Automated Control System Design' (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency-domains. Such performance-prioritised unification is aimed to relieve practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-committing to the adopted scheme. With the recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytically and practically, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, meets multiple objectives in designing an LTI controller for a non-minimum phase plant and offers a high-performing LTI controller network for a nonlinear chemical process
Harmonic oscillations and their switching in elliptical optical waveguide arrays
We have studied harmonic oscillations in an elliptical optical waveguide
array in which the coupling between neighboring waveguides is varied in accord
with a Kac matrix so that the propagation constant eigenvalues can take equally
spaced values. As a result, long-living Bloch oscillation (BO) and dipole
oscillation (DO) are obtained when a linear gradient in the propagation
constant is applied. Moreover, we achieve a switching from DO to BO or vice
versa by ramping up the gradient profile. The various optical oscillations as
well as their switching are investigated by field evolution analysis and
confirmed by Hamiltonian optics. The equally spaced eigenvalues in the
propagation constant allow viable applications in transmitting images,
switching and routing of optical signals.Comment: 14 pages, 5 figure
Ring Formation in Magnetically Subcritical Clouds and Multiple Star Formation
We study numerically the ambipolar diffusion-driven evolution of
non-rotating, magnetically subcritical, disk-like molecular clouds, assuming
axisymmetry. Previous similar studies have concentrated on the formation of
single magnetically supercritical cores at the cloud center, which collapse to
form isolated stars. We show that, for a cloud with many Jeans masses and a
relatively flat mass distribution near the center, a magnetically supercritical
ring is produced instead. The supercritical ring contains a mass well above the
Jeans limit. It is expected to break up, through both gravitational and
possibly magnetic interchange instabilities, into a number of supercritical
dense cores, whose dynamic collapse may give rise to a burst of star formation.
Non-axisymmetric calculations are needed to follow in detail the expected ring
fragmentation into multiple cores and the subsequent core evolution.
Implications of our results on multiple star formation in general and the
northwestern cluster of protostars in the Serpens molecular cloud core in
particular are discussed.Comment: 25 pages, 4 figures, to appear in Ap
Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages
A wavelength-swept thulium-doped fiber laser system employing two parallel cavities with two different fiber gain stages is reported. The fiber gain stages were tailored to provide emission in complementary bands with external wavelength-dependent feedback cavities sharing a common rotating polygon mirror for wavelength scanning. The wavelength-swept laser outputs from the fiber gain elements were spectrally combined by means of a dichroic mirror and yielded over 500 mW of output with a scanning range from ~1740 nm to ~2070 nm for a scanning frequency of ~340 Hz
- …
