403,873 research outputs found

    Survey of aircraft electrical power systems

    Get PDF
    Areas investigated include: (1) load analysis; (2) power distribution, conversion techniques and generation; (3) design criteria and performance capabilities of hydraulic and pneumatic systems; (4) system control and protection methods; (5) component and heat transfer systems cooling; and (6) electrical system reliability

    Power-law Behavior of High Energy String Scatterings in Compact Spaces

    Full text link
    We calculate high energy massive scattering amplitudes of closed bosonic string compactified on the torus. We obtain infinite linear relations among high energy scattering amplitudes. For some kinematic regimes, we discover that some linear relations break down and, simultaneously, the amplitudes enhance to power-law behavior due to the space-time T-duality symmetry in the compact direction. This result is consistent with the coexistence of the linear relations and the softer exponential fall-off behavior of high energy string scattering amplitudes as we pointed out prevously. It is also reminiscent of hard (power-law) string scatterings in warped spacetime proposed by Polchinski and Strassler.Comment: 6 pages, no figure. Talk presented by Jen-Chi Lee at Europhysics Conference (EPS2007), Manchester, England, July 19-25, 2007. To be published by Journal of Physics: Conference Series

    Stochastic control system parameter identifiability

    Get PDF
    The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters

    The causal meaning of Fisher's average effect

    Full text link
    In order to formulate the Fundamental Theorem of Natural Selection, Fisher defined the average excess and average effect of a gene substitution. Finding these notions to be somewhat opaque, some authors have recommended reformulating Fisher's ideas in terms of covariance and regression, which are classical concepts of statistics. We argue that Fisher intended his two averages to express a distinction between correlation and causation. On this view the average effect is a specific weighted average of the actual phenotypic changes that result from physically changing the allelic states of homologous genes. We show that the statistical and causal conceptions of the average effect, perceived as inconsistent by Falconer, can be reconciled if certain relationships between the genotype frequencies and non-additive residuals are conserved. There are certain theory-internal considerations favoring Fisher's original formulation in terms of causality; for example, the frequency-weighted mean of the average effects equaling zero at each locus becomes a derivable consequence rather than an arbitrary constraint. More broadly, Fisher's distinction between correlation and causation is of critical importance to gene-trait mapping studies and the foundations of evolutionary biology

    Drell-Yan process in soft-collinear effective theory near end-point

    Full text link
    The Drell-Yan process is analyzed in soft-collinear effective theory near the end-point region. It is assumed that the relevant final-state hadron energy Q(1z)Q(1-z) where zz is the momentum fraction transferred to the virtual photon is the typical hadronic scale Λ\sim\Lambda, thus no intermediate scale exists. It is shown that this setup successfully reproduces the full theory results. We also discuss the factorized soft Wilson lines for the Drell-Yan process.Comment: 18 pages, 6 figures. More discussions, references added. PRD accepted versio

    The Proposed Quadruple System SZ Herculis: Revised LITE Model and Orbital Stability Study

    Full text link
    In a recent study, Lee et al. presented new photometric follow-up timing observations of the semi-detached binary system SZ Herculis and proposed the existence of two hierarchical cirumbinary companions. Based on the light-travel time effect, the two low-mass M-dwarf companions are found to orbit the binary pair on moderate to high eccentric orbits. The derived periods of these two companions are close to a 2:1 mean-motion orbital resonance. We have studied the stability of the system using the osculating orbital elements as presented by Lee et al. Results indicate an orbit-crossing architecture exhibiting short-term dynamical instabilities leading to the escape of one of the proposed companions. We have examined the system's underlying model parameter-space by following a Monte Carlo approach and found an improved fit to the timing data. A study of the stability of our best-fitting orbits also indicates that the proposed system is generally unstable. If the observed anomalous timing variations of the binary period is due to additional circumbinary companions, then the resulting system should exhibit a long-term stable orbital configuration much different from the orbits suggested by Lee et al. We, therefore, suggest that based on Newtonian-dynamical considerations, the proposed quadruple system cannot exist. To uncover the true nature of the observed period variations of this system, we recommend future photometric follow-up observations that could further constrain eclipse-timing variations and/or refine light-travel time models.Comment: 24 pages, 2 tables, 8 figures (bw), submitted to A

    Characteristics and performance of the variable polarity plasma arc welding process used in the Space Shuttle external tank

    Get PDF
    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. Flow profiles and power distribution of argon plasma gas as a working fluid to produce plasma arc jet in the VPPA welding process was analyzed. Major loss of heat transfer for flow through the nozzle is convective heat transfer; for the plasma jet flow between the outlet of the nozzle and workpiece is radiative heat transfer; and for the flow through the keyhole of the workpiece is convective heat transfer. The majority of the power absorbed by the keyhole of the workpiece is used for melting the solid metal workpiece into a molten metallic puddle. The crown and root widths and the crown and root heights can be predicted. An algorithm for promoting automatic control of flow parameters and the dimensions of the final product of the welding specification to be used for the VPPA Welding System operated at MSFC are provided

    Multimode propagation in phononic crystals with overlapping Bragg and hybridization effects

    Full text link
    Unusual dispersion properties are observed in a phononic crystal of nylon rods in water when the lattice constant is adjusted so that Bragg and hybridization gaps overlap in frequency. On the basis of experimental and numerical analyses of time-dependent transmission and spatial field maps, the presence of two coexisting propagation modes of similar amplitude is demonstrated near the resonance frequency. This phenomenon is attributed to the coupling of the rod resonances arranged in a triangular lattice, with phase shifts driven by the Bragg condition.Comment: 5 pages, 5 figure

    Concepts relating magnetic interactions, intertwined electronic orders and strongly correlated superconductivity

    Full text link
    Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron-electron interactions, so that the symmetry of the pair wavefunction is other than isotropic s-wave. The strong, on-site, repulsive electron-electron interactions that are the proximate cause of such superconductivity are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the intertwined phases. Here we introduce a model conceptual framework within which to understand the relationship between antiferromagnetic electron-electron interactions, intertwined ordered phases and correlated superconductivity. We demonstrate its effectiveness in simultaneously explaining the consequences of antiferromagnetic interactions for the copper-based, iron-based and heavy-fermion superconductors, as well as for their quite distinct intertwined phases.Comment: Main text + 11 figure

    Complete gradient-LC-ESI system on a chip for protein analysis

    Get PDF
    This paper presents the first fully integrated gradient-elution liquid chromatography-electrospray ionization (LC-ESI) system on a chip. This chip integrates a pair of high-pressure gradient pumps, a sample injection pump, a passive mixer, a packed separation column, and an ESI nozzle. We also present the successful on-chip separation of protein digests by reverse phase (RP)-LC coupled with on-line mass spectrometer (MS) analysis
    corecore