304,910 research outputs found

    QCD Factorization for Quarkonium Production in Hadron Collions at Low Transverse Momentum

    Full text link
    Inclusive production of a quarkonium ηc,b\eta_{c,b} in hadron collisions at low transverse momentum can be used to extract various Transverse-Momentum-Dependent(TMD) gluon distributions of hadrons, provided the TMD factorization for the process holds. The factorization involving unpolarized TMD gluon distributions of unpolarized hadrons has been examined with on-shell gluons at one-loop level. In this work we study the factorization at one-loop level with diagram approach in the most general case, where all TMD gluon distributions at leading twist are involved. We find that the factorization holds and the perturbative effects are represented by one perturbative coefficient. Since the initial gluons from hadrons are off-shell in general, there exists the so-called super-leading region found recently. We find that the contributions from this region can come from individual diagrams at one-loop level, but they are cancelled in the sum. Our factorized result for the differential cross-section is explicitly gauge-invariant.Comment: discussions and references are added. Published version on Phys. Rev.

    Crustal dynamics project data analysis, 1986. Volume 1: Fixed station VLBI geodetic results

    Get PDF
    The Goddard VLBI group reports the results of analyzing 361 Mark III VLBI data sets from fixed observatories through the end of 1985 which are available to the Crustal Dynamics Project. All POLARIS/IRIS full-day data sets are included. The mobile VLBI sites at Platteville, Colorado; Penticton, British Columbia; and Yellowknife, Northwest Territories are also included since these occupations bear on the study of plate stability. Two large solutions, GLB027 and GLB028, were used to obtain site/baseline evolutions and earth rotation parameters, respectively. Source positions and nutation offsets were also adjusted in each solution. The results include 23 sites and 101 baselines

    Crustal dynamics project data analysis fixed station VLBI geodetic results

    Get PDF
    The Goddard VLBI group reports the results of analyzing the fixed observatory VLBI data available to the Crustal Dynamics Project through the end of 1984. All POLARIS/IRIS full-day data are included. The mobile site at Platteville, Colorado is also included since its occupation bears on the study of plate stability. Data from 1980 through 1984 were used to obtain the catalog of site and radio source positions labeled S284C. Using this catalog two types of one-day solutions were made: (1) to estimate site and baseline motions; and (2) to estimate Earth rotation parameters. A priori Earth rotation parameters were interpolated to the epoch of each observation from BIH Circular D

    Crustal dynamics project data analysis, 1987. Volume 1: Fixed station VLBI geodetic results, 1979-1986

    Get PDF
    The Goddard VLBI group reports the results of analyzing Mark III data sets from fixed observatories through the end of 1986 and available to the Crustal Dynamics Project. All full-day data from POLARIS/IRIS are included. The mobile VLBI sites at Platteville (Colorado), Penticton (British Columbia), and Yellowknife (Northwest Territories) are also included since these occupations bear on the study of plate stability. Two large solutions, GLB121 and GLB122, were used to obtain Earth rotation parameters and baseline evolutions, respectively. Radio source positions were estimated globally while nutation offsets were estimated from each data set. The results include 25 sites and 108 baselines

    Pancharatnam-Berry phase and kinetic magnetoelectric effect in a three-dimensional helical crystal (Te)

    Full text link
    We study the kinetic magnetoelectric effect (current-induced magnetization including both the orbital and spin contributions) in three-dimensional conductors, specializing to the case of p-doped trigonal tellurium. We include both intrinsic and extrinsic contributions to the effect, which stem from the band structure of the crystal, and from disorder scattering, respectively. Specifically, we determine the dependence of the kinetic magnetoelectric response on the hole doping in tellurium, and show that the intrinsic and extrinsic effects dominate for low and high levels of doping, respectively. The results of this work imply that three-dimensional helical metals are promising for spintronics applications, in particular, they can provide robust control over current-induced magnetic torques.Comment: 9+3 pages, 3 figure

    Temperature determined by isobaric yield ratio in heavy-ion collisions

    Full text link
    This work focuses on the study of temperature associated with the final heavy fragments in reactions induced by both the neutron-proton symmetric and the neutron-rich projectiles, and with incident energy ranges from 60AA MeV to 1AA GeV. Isobaric yield ratio (IYR) is used to determine the temperature of heavy fragments. Cross sections of measured fragment in reactions are analyzed, and a modified statistical abrasion-ablation (SAA) model is used to calculate the yield of fragment in 140AA MeV 64^{64}Ni + 9^{9}Be and 1AA GeV 136^{136}Xe + 208^{208}Pb reactions. Relatively low TT of heavy fragments are obtained in different reactions (TT ranges from 1 to 3MeV). TT is also found to depend on the neutron-richness of the projectile. The incident energy affects TT very little. Δμ/T\Delta\mu/T (the ratio of the difference between the chemical potential of neutron and proton to temperature) is found to increase linearly as N/ZN/Z of projectile increases. It is found that TT of the 48^{48}Ca reaction, for which IYRs are of A<50A<50 isobars, is affected greatly by the temperature-corrected ΔB(T)\Delta B(T). But TT of reactions using IYRs of heavier fragments are only slightly affected by the temperature-corrected ΔB(T)\Delta B(T). The SAA model analysis gives a consistent overview of the results extracted in this work. TT from IYR, which is for secondary fragment, is different from that of the hot emitting source. TT and Δμ\Delta\mu are essentially governed by the sequential decay process.Comment: 7 pages, 6 figure

    Transverse-Momentum Dependent Factorization for gamma^* pi^0 to gamma

    Full text link
    With a consistent definition of transverse-momentum dependent (TMD) light-cone wave function, we show that the amplitude for the process γπ0γ\gamma^* \pi^0 \to\gamma can be factorized when the virtuality of the initial photon is large. In contrast to the collinear factorization in which the amplitude is factorized as a convolution of the standard light-cone wave function and a hard part, the TMD factorization yields a convolution of a TMD light-cone wave function, a soft factor and a hard part. We explicitly show that the TMD factorization holds at one loop level. It is expected that the factorization holds beyond one-loop level because the cancelation of soft divergences is on a diagram-by-diagram basis. We also show that the TMD factorization helps to resum large logarithms of type ln2x\ln^2x.Comment: Published version in Phys.Rev.D75:014014,200
    corecore