10,590 research outputs found
Quasi-rigidity: some uniqueness issues
Quasi-rigidity means that one builds a theory for assemblies of grains under
a slowly changing external load by using the deformation of those grains as a
small parameter. Is quasi-rigidity a complete theory for these granular
assemblies? Does it provide unique predictions of the assembly's behavior, or
must some other process be invoked to decide between several possibilities? We
provide evidence that quasi-rigidity is a complete theory by showing that two
possible sources of indeterminacy do not exist for the case of disk shaped
grains. One possible source of indeterminacy arises from zero-frequency modes
present in the packing. This problem can be solved by considering the
conditions required to obtain force equilibrium. A second possible source of
indeterminacy is the necessity to choose the status (sliding or non-sliding) at
each contact. We show that only one choice is permitted, if contacts slide only
when required by Coulomb friction.Comment: 14 pages, 3 figures, submitted to Phys Rev E (introduction and
conclusion revised
Emerging Investigators Series: Pyrolysis Removes Common Microconstituents Triclocarban, Triclosan, and Nonylphenol from Biosolids
Reusing biosolids is vital for the sustainability of wastewater management. Pyrolysis is an anoxic thermal degradation process that can be used to convert biosolids into energy rich py-gas and py-oil, and a beneficial soil amendment, biochar. Batch biosolids pyrolysis (60 minutes) revealed that triclocarban and triclosan were removed (to below quantification limit) at 200 °C and 300 °C, respectively. Substantial removal (\u3e90%) of nonylphenol was achieved at 300 °C as well, but 600 °C was required to remove nonylphenol to below the quantification limit. At 500 °C, the pyrolysis reaction time to remove \u3e90% of microconstituents was less than 5 minutes. Fate studies revealed that microconstituents were both volatilized and thermochemically transformed during pyrolysis; microconstituents with higher vapor pressures were more likely to volatilize and leave the pyrolysis reactor before being transformed than compounds with lower vapor pressures. Reductive dehalogenation products of triclocarban and suspected dehalogenation products of triclosan were identified in py-gas. Application of biosolids-derived biochar to soil in place of biosolids has potential to minimize organic microconstituents discharged to the environment provided appropriate management of py-gas and py-oil
Pyrolysis of Wastewater Biosolids Significantly Reduces Estrogenicity
Most wastewater treatment processes are not specifically designed to remove micropollutants. Many micropollutants are hydrophobic so they remain in the biosolids and are discharged to the environment through land-application of biosolids. Micropollutants encompass a broad range of organic chemicals, including estrogenic compounds (natural and synthetic) that reside in the environment, a.k.a. environmental estrogens. Public concern over land application of biosolids stemming from the occurrence of micropollutants hampers the value of biosolids which are important to wastewater treatment plants as a valuable by-product. This research evaluated pyrolysis, the partial decomposition of organic material in an oxygen-deprived system under high temperatures, as a biosolids treatment process that could remove estrogenic compounds from solids while producing a less hormonally active biochar for soil amendment. The estrogenicity, measured in estradiol equivalents (EEQ) by the yeast estrogen screen (YES) assay, of pyrolyzed biosolids was compared to primary and anaerobically digested biosolids. The estrogenic responses from primary solids and anaerobically digested solids were not statistically significantly different, but pyrolysis of anaerobically digested solids resulted in a significant reduction in EEQ; increasing pyrolysis temperature from 100 °C to 500 °C increased the removal of EEQ with greater than 95% removal occurring at or above 400 °C. This research demonstrates that biosolids treatment with pyrolysis would substantially decrease (removal \u3e 95%) the estrogens associated with this biosolids product. Thus, pyrolysis of biosolids can be used to produce a valuable soil amendment product, biochar, that minimizes discharge of estrogens to the environment
Using geophysical surveys to test tracer-based storage estimates in headwater catchments
Acknowledgements The authors are grateful to Stian Bradford, Chris Gabrielli, and Julie Timms for practical and logistical assistance. The provision of transport by Iain Malcolm and Ross Glover of Marine Scotland Science was greatly appreciated. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016).Peer reviewedPostprin
Radio AGN in galaxy clusters: heating hot atmospheres and driving supermassive black hole growth over cosmic time
We estimate the average radio-AGN (mechanical) power deposited into the hot
atmospheres of galaxy clusters over more than three quarters of the age of the
Universe. Our sample was drawn from eight major X-ray cluster surveys, and
includes 685 clusters in the redshift range 0.1 < z < 0.6 that overlap the area
covered by the NVSS. The radio AGN mechanical power was estimated from the
radio luminosity of central NVSS sources, using the relation of Cavagnolo et
al. 2010 that is based on mechanical powers determined from the enthalpies of
X-ray cavities. We find only a weak correlation between radio luminosity and
cluster X-ray luminosity, although the most powerful radio sources resides in
luminous clusters. The average AGN mechanical power of 3x10^{44} erg/s exceeds
the X-ray luminosity of 44% of the clusters, indicating that the accumulation
of radio-AGN energy is significant in these clusters. Integrating the AGN
mechanical power to redshift z=2, using simple models for its evolution and
disregarding the hierarchical growth of clusters, we find that the AGN energy
accumulated per particle in low luminosity X-ray clusters exceeds 1 keV per
particle. This result represents a conservative lower limit to the accumulated
thermal energy. The estimate is comparable to the level of energy needed to
"preheat" clusters, indicating that continual outbursts from radio-AGN are a
significant source of gas energy in hot atmospheres. Assuming an average mass
conversion efficiency of , our result implies that the supermassive
black holes that released this energy did so by accreting an average of ~10^9
M_{sun} over time, which is comparable to the level of growth expected during
the quasar era.Comment: accepted by ApJ; An updated version after peer review of Ap
An Energetic AGN Outburst Powered by a Rapidly Spinning Supermassive Black Hole or an Accreting Ultramassive Black Hole
Powering the 10^62 erg nuclear outburst in the MS0735.6+7421 cluster central
galaxy by accretion implies that its supermassive black hole (SMBH) grew by
~6x10^8 solar masses over the past 100 Myr. We place upper limits on the amount
of cold gas and star formation near the nucleus of <10^9 solar masses and <2
solar masses per year, respectively. These limits imply that an implausibly
large fraction of the preexisting cold gas in the bulge must have been consumed
by its SMBH at the rate of ~3-5 solar masses per year while leaving no trace of
star formation. Such a high accretion rate would be difficult to maintain by
stellar accretion or the Bondi mechanism, unless the black hole mass approaches
10^11 solar masses. Its feeble nuclear luminosities in the UV, I, and X-ray
bands compared to its enormous mechanical power are inconsistent with rapid
accretion onto a ~5x10^9 solar mass black hole. We suggest instead that the AGN
outburst is powered by a rapidly-spinning black hole. A maximally-spinning,
10^9 solar mass black hole contains enough rotational energy, ~10^62 erg, to
quench a cooling flow over its lifetime and to contribute significantly to the
excess entropy found in the hot atmospheres of groups and clusters. Two modes
of AGN feedback may be quenching star formation in elliptical galaxies centered
in cooling halos at late times. An accretion mode that operates in gas-rich
systems, and a spin mode operating at modest accretion rates. The spin
conjecture may be avoided in MS0735 by appealing to Bondi accretion onto a
central black hole whose mass greatly exceeds 10^10 solar mass. The host
galaxy's unusually large, 3.8 kpc stellar core radius (light deficit) may
witness the presence of an ultramassive black hole.Comment: Accepted for publication in ApJ. Modifications: adopted slightly
higher black hole mass using Lauer's M_SMBH vs L_bulge relation and adjusted
related quantities; considered more seriously the consequences of a
ultramassive black hole, motivated by new Kormendy & Bender paper published
after our submission; other modifications per referee comments by Ruszkowsk
The Open Cluster NGC 7789: I. Radial Velocities for Giant Stars
A total of 597 radial-velocity observations for 112 stars in the ~1.6 Gyr old
open cluster NGC 7789 have been obtained since 1979 with the radial velocity
spectrometer at the Dominion Astrophysical Observatory. The mean cluster radial
velocity is -54.9 +/- 0.12 km/s and the dispersion is 0.86 km/s, from 50
constant-velocity stars selected as members from this radial-velocity study and
the proper motion study of McNamara and Solomon (1981). Twenty-five stars (32%)
among 78 members are possible radial-velocity variable stars, but no orbits are
determined because of the sparse sampling. Seventeen stars are radial-velocity
non-members, while membership estimates of six stars are uncertain.
There is a hint that the observed velocity dispersion falls off at large
radius. This may due to the inclusion of long-period binaries preferentially in
the central area of the cluster. The known radial-velocity variables also seem
to be more concentrated toward the center than members with constant velocity.
Although this is significant at only the 85% level, when combined with similar
result of Raboud and Mermilliod (1994) for three other clusters, the data
strongly support the conclusion that mass segregation is being detected.Comment: 16 pages (including 3 figures) and 3 table
Controls on the temporal and spatial variability of soil moisture in a mountainous landscape: the signature of snow and complex terrain
The controls on the spatial distribution of soil moisture include static and dynamic variables. The superposition of static and dynamic controls can lead to different soil moisture patterns for a given catchment during wetting, draining, and drying periods. These relationships can be further complicated in snow-dominated mountain regions where soil water input by precipitation is largely dictated by the spatial variability of snow accumulation and melt. In this study, we assess controls on spatial and temporal soil moisture variability in a small (0.02 km<sup>2</sup>), snow-dominated, semi-arid catchment by evaluating spatial correlations between soil moisture and site characteristics through different hydrologic seasons. We assess the relative importance of snow with respect to other catchment properties on the spatial variability of soil moisture and track the temporal persistence of those controls. Spatial distribution of snow, distance from divide, soil texture, and soil depth exerted significant control on the spatial variability of moisture content throughout most of the hydrologic year. These relationships were strongest during the wettest period and degraded during the dry period. As the catchment cycled through wet and dry periods, the relative spatial variability of soil moisture tended to remain unchanged. We suggest that the static properties in complex terrain (slope, aspect, soils) impose first order controls on the spatial variability of snow and resulting soil moisture patterns, and that the interaction of dynamic (timing of water input) and static influences propagate that relative constant spatial variability through most of the hydrologic year. The results demonstrate that snow exerts significant influence on how water is retained within mid-elevation semi-arid catchments and suggest that reductions in annual snowpacks associated with changing climate regimes may strongly influence spatial and temporal soil moisture patterns and catchment physical and biological processes
Energy flows in vibrated granular media
We study vibrated granular media, investigating each of the three components
of the energy flow: particle-particle dissipation, energy input at the
vibrating wall, and particle-wall dissipation. Energy dissipated by
interparticle collisions is well estimated by existing theories when the
granular material is dilute, and these theories are extended to include
rotational kinetic energy. When the granular material is dense, the observed
particle-particle dissipation rate decreases to as little as 2/5 of the
theoretical prediction. We observe that the rate of energy input is the weight
of the granular material times an average vibration velocity times a function
of the ratio of particle to vibration velocity. `Particle-wall' dissipation has
been neglected in all theories up to now, but can play an important role when
the granular material is dilute. The ratio between gravitational potential
energy and kinetic energy can vary by as much as a factor of 3. Previous
simulations and experiments have shown that E ~ V^delta, with delta=2 for
dilute granular material, and delta ~ 1.5 for dense granular material. We
relate this change in exponent to the departure of particle-particle
dissipation from its theoretical value.Comment: 19 pages revtex, 10 embedded eps figures, accepted by PR
- …
