25,224 research outputs found

    Internal Stresses and Formation of Switchable Nanowires at Thin Silica Film Edge

    Full text link
    At vertical edges, thin films of silicon oxide (SiO_{2-x}) contain semiconductive c-Si layered nanocrystals (Si NC) embedded in and supported by an insulating g-SiO2 matrix. Tour et al. have shown that a trenched thin film geometry enables the NC to form switchable nanowires (SNW) when trained by an applied field. The field required to form SNW decreases rapidly within a few cycles, or by annealing at 600 C in even fewer cycles, and is stable to 700C. Here we describe the intrinsic evolution of Si NC and SNW in terms of the competition between internal stresses and electro-osmosis. The analysis relies heavily on experimental data from a wide range of thin film studies, and it explains why a vertical edge across the planar Si-SiOx interface is necessary to form SNW. The discussion also shows that the formation mechanisms of Si NC and Si/SiO_{2-x} SNW are intrinsic and result from optimization of nanowire conductivity in the presence of residual host misfit stresses

    Design data collection with Skylab/EREP microwave instrument S-193

    Get PDF
    There are no author-identified significant results in this report

    Instability of defensive alliances in the predator-prey model on complex networks

    Full text link
    A model of six-species food web is studied in the viewpoint of spatial interaction structures. Each species has two predators and two preys, and it was previously known that the defensive alliances of three cyclically predating species self-organize in two-dimensions. The alliance-breaking transition occurs as either the mutation rate is increased or interaction topology is randomized in the scheme of the Watts-Strogatz model. In the former case of temporal disorder, via the finite-size scaling analysis the transition is clearly shown to belong to the two-dimensional Ising universality class. In contrast, the geometric or spatial randomness for the latter case yields a discontinuous phase transition. The mean-field limit of the model is analytically solved and then compared with numerical results. The dynamic universality and the temporally periodic behaviors are also discussed.Comment: 5 page

    Compaction and dilation rate dependence of stresses in gas-fluidized beds

    Full text link
    A particle dynamics-based hybrid model, consisting of monodisperse spherical solid particles and volume-averaged gas hydrodynamics, is used to study traveling planar waves (one-dimensional traveling waves) of voids formed in gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging in a co-traveling frame, we compute solid phase continuum variables (local volume fraction, average velocity, stress tensor, and granular temperature) across the waves, and examine the relations among them. We probe the consistency between such computationally obtained relations and constitutive models in the kinetic theory for granular materials which are widely used in the two-fluid modeling approach to fluidized beds. We demonstrate that solid phase continuum variables exhibit appreciable ``path dependence'', which is not captured by the commonly used kinetic theory-based models. We show that this path dependence is associated with the large rates of dilation and compaction that occur in the wave. We also examine the relations among solid phase continuum variables in beds of cohesive particles, which yield the same path dependence. Our results both for beds of cohesive and non-cohesive particles suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect analysis added

    Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry

    Get PDF
    Within the “Compartmentalised Smart Factory” approach of the ONE-FLOW project the implementation of different catalysts in “compartments” provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd-catalysts that are ready to be used in combination with biocatalysts for catalytic cascade syntheses of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross coupling reactions, which is the key step in the syntheses of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd-oxides with the molecular formula Ce0.99-xSnxPd0.01O2-(x= 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross coupling reactions in batch as well as in continuous flow employing the so-called “Plug & Play reactor”. Finally, we demonstrate the use of these particles as the sole emulsifier of oil + water emulsions for a range of oils

    Coarse-graining the dynamics of coupled oscillators

    Full text link
    We present an equation-free computational approach to the study of the coarse-grained dynamics of {\it finite} assemblies of {\it non-identical} coupled oscillators at and near full synchronization. We use coarse-grained observables which account for the (rapidly developing) correlations between phase angles and oscillator natural frequencies. Exploiting short bursts of appropriately initialized detailed simulations, we circumvent the derivation of closures for the long-term dynamics of the assembly statistics.Comment: accepted for publication in Phys. Rev. Let
    corecore