25,224 research outputs found
Internal Stresses and Formation of Switchable Nanowires at Thin Silica Film Edge
At vertical edges, thin films of silicon oxide (SiO_{2-x}) contain
semiconductive c-Si layered nanocrystals (Si NC) embedded in and supported by
an insulating g-SiO2 matrix. Tour et al. have shown that a trenched thin film
geometry enables the NC to form switchable nanowires (SNW) when trained by an
applied field. The field required to form SNW decreases rapidly within a few
cycles, or by annealing at 600 C in even fewer cycles, and is stable to 700C.
Here we describe the intrinsic evolution of Si NC and SNW in terms of the
competition between internal stresses and electro-osmosis. The analysis relies
heavily on experimental data from a wide range of thin film studies, and it
explains why a vertical edge across the planar Si-SiOx interface is necessary
to form SNW. The discussion also shows that the formation mechanisms of Si NC
and Si/SiO_{2-x} SNW are intrinsic and result from optimization of nanowire
conductivity in the presence of residual host misfit stresses
Design data collection with Skylab/EREP microwave instrument S-193
There are no author-identified significant results in this report
Instability of defensive alliances in the predator-prey model on complex networks
A model of six-species food web is studied in the viewpoint of spatial
interaction structures. Each species has two predators and two preys, and it
was previously known that the defensive alliances of three cyclically predating
species self-organize in two-dimensions. The alliance-breaking transition
occurs as either the mutation rate is increased or interaction topology is
randomized in the scheme of the Watts-Strogatz model. In the former case of
temporal disorder, via the finite-size scaling analysis the transition is
clearly shown to belong to the two-dimensional Ising universality class. In
contrast, the geometric or spatial randomness for the latter case yields a
discontinuous phase transition. The mean-field limit of the model is
analytically solved and then compared with numerical results. The dynamic
universality and the temporally periodic behaviors are also discussed.Comment: 5 page
Compaction and dilation rate dependence of stresses in gas-fluidized beds
A particle dynamics-based hybrid model, consisting of monodisperse spherical
solid particles and volume-averaged gas hydrodynamics, is used to study
traveling planar waves (one-dimensional traveling waves) of voids formed in
gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging
in a co-traveling frame, we compute solid phase continuum variables (local
volume fraction, average velocity, stress tensor, and granular temperature)
across the waves, and examine the relations among them. We probe the
consistency between such computationally obtained relations and constitutive
models in the kinetic theory for granular materials which are widely used in
the two-fluid modeling approach to fluidized beds. We demonstrate that solid
phase continuum variables exhibit appreciable ``path dependence'', which is not
captured by the commonly used kinetic theory-based models. We show that this
path dependence is associated with the large rates of dilation and compaction
that occur in the wave. We also examine the relations among solid phase
continuum variables in beds of cohesive particles, which yield the same path
dependence. Our results both for beds of cohesive and non-cohesive particles
suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect
analysis added
Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry
Within the “Compartmentalised Smart Factory” approach of the ONE-FLOW project the implementation of different catalysts in “compartments” provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd-catalysts that are ready to be used in combination with biocatalysts for catalytic cascade syntheses of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross coupling reactions, which is the key step in the syntheses of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd-oxides with the molecular formula Ce0.99-xSnxPd0.01O2-(x= 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross coupling reactions in batch as well as in continuous flow employing the so-called “Plug & Play reactor”. Finally, we demonstrate the use of these particles as the sole emulsifier of oil + water emulsions for a range of oils
Coarse-graining the dynamics of coupled oscillators
We present an equation-free computational approach to the study of the
coarse-grained dynamics of {\it finite} assemblies of {\it non-identical}
coupled oscillators at and near full synchronization. We use coarse-grained
observables which account for the (rapidly developing) correlations between
phase angles and oscillator natural frequencies. Exploiting short bursts of
appropriately initialized detailed simulations, we circumvent the derivation of
closures for the long-term dynamics of the assembly statistics.Comment: accepted for publication in Phys. Rev. Let
- …
