509,778 research outputs found

    QCD Factorization for Quarkonium Production in Hadron Collions at Low Transverse Momentum

    Full text link
    Inclusive production of a quarkonium ηc,b\eta_{c,b} in hadron collisions at low transverse momentum can be used to extract various Transverse-Momentum-Dependent(TMD) gluon distributions of hadrons, provided the TMD factorization for the process holds. The factorization involving unpolarized TMD gluon distributions of unpolarized hadrons has been examined with on-shell gluons at one-loop level. In this work we study the factorization at one-loop level with diagram approach in the most general case, where all TMD gluon distributions at leading twist are involved. We find that the factorization holds and the perturbative effects are represented by one perturbative coefficient. Since the initial gluons from hadrons are off-shell in general, there exists the so-called super-leading region found recently. We find that the contributions from this region can come from individual diagrams at one-loop level, but they are cancelled in the sum. Our factorized result for the differential cross-section is explicitly gauge-invariant.Comment: discussions and references are added. Published version on Phys. Rev.

    Polarized Curvature Radiation in Pulsar Magnetosphere

    Full text link
    The propagation of polarized emission in pulsar magnetosphere is investigated in this paper. The polarized waves are generated through curvature radiation from the relativistic particles streaming along curved magnetic field lines and co-rotating with the pulsar magnetosphere. Within the 1/{\deg} emission cone, the waves can be divided into two natural wave mode components, the ordinary (O) mode and the extraord nary (X) mode, with comparable intensities. Both components propagate separately in magnetosphere, and are aligned within the cone by adiabatic walking. The refraction of O-mode makes the two components separated and incoherent. The detectable emission at a given height and a given rotation phase consists of incoherent X-mode and O-mode components coming from discrete emission regions. For four particle-density models in the form of uniformity, cone, core and patches, we calculate the intensities for each mode numerically within the entire pulsar beam. If the co-rotation of relativistic particles with magnetosphere is not considered, the intensity distributions for the X-mode and O-mode components are quite similar within the pulsar beam, which causes serious depolarization. However, if the co-rotation of relativistic particles is considered, the intensity distributions of the two modes are very different, and the net polarization of out-coming emission should be significant. Our numerical results are compared with observations, and can naturally explain the orthogonal polarization modes of some pulsars. Strong linear polarizations of some parts of pulsar profile can be reproduced by curvature radiation and subsequent propagation effect.Comment: 12 pages, 9 figures, Accepted for publication in MNRA

    Variation of the solar magnetic flux spectrum during solar cycle 23

    Full text link
    By using the unique database of SOHO/MDI full disk magnetograms from 1996 September to 2011 January, covering the entire solar cycle 23, we analyze the time-variability of the solar magnetic flux spectrum and study the properties of extended minimum of cycle 23. We totally identify 11.5 million magnetic structures. It has been revealed that magnetic features with different magnetic fluxes exhibit different cycle behaviors. The magnetic features with flux larger than 4.0×10194.0 \times 10^{19} Mx, which cover solar active regions and strong network features, show exactly the same variation as sunspots; However, the remaining 82%82\% magnetic features which cover the majority of network elements show anti-phase variation with sunspots. We select a riterion that the monthly sunspot number is less than 20 to represent the Sun's low activity status. Then we find the extended minimum of cycle 23 is characterized by the long duration of low activity status, but the magnitude of magnetic flux in this period is not lower than previous cycle. Both the duration of low activity status and the minimum activity level defined by minimum sunspot number show a century period approximately. The extended minimum of cycle 23 shows similarities with solar cycle 11, which preceded the mini-maxima in later solar cycles. This similarity is suggestive that the solar cycles following cycle 23 are likely to have low activity.Comment: 24 pages, 7 figures, accepted by JGR in 201

    The SDSS Galaxy Angular Two-Point Correlation Function

    Full text link
    We present the galaxy two-point angular correlation function for galaxies selected from the seventh data release of the Sloan Digital Sky Survey. The galaxy sample was selected with rr-band apparent magnitudes between 17 and 21; and we measure the correlation function for the full sample as well as for the four magnitude ranges: 17-18, 18-19, 19-20, and 20-21. We update the flag criteria to select a clean galaxy catalog and detail specific tests that we perform to characterize systematic effects, including the effects of seeing, Galactic extinction, and the overall survey uniformity. Notably, we find that optimally we can use observed regions with seeing < 1\farcs5, and rr-band extinction < 0.13 magnitudes, smaller than previously published results. Furthermore, we confirm that the uniformity of the SDSS photometry is minimally affected by the stripe geometry. We find that, overall, the two-point angular correlation function can be described by a power law, ω(θ)=Aωθ(1γ)\omega(\theta) = A_\omega \theta^{(1-\gamma)} with γ1.72\gamma \simeq 1.72, over the range 0\fdg005--10\degr. We also find similar relationships for the four magnitude subsamples, but the amplitude within the same angular interval for the four subsamples is found to decrease with fainter magnitudes, in agreement with previous results. We find that the systematic signals are well below the galaxy angular correlation function for angles less than approximately 5\degr, which limits the modeling of galaxy angular correlations on larger scales. Finally, we present our custom, highly parallelized two-point correlation code that we used in this analysis.Comment: 22 pages, 17 figures, accepted by MNRA

    A comparison between the MEXE and Pippard's methods of assessing the load carrying capacity of masonry arch bridges

    Get PDF
    The Military Engineering eXperimental Establishment (MEXE) method is a long established system of masonry arch load carrying capacity assessment. It has been subject to review in recent years and some shortcomings have been identified. There is now growing consensus that the current version of MEXE overestimates the load carrying capacity of short span bridges, but for spans over 12m it becomes increasingly conservative. In this paper Pippard’s elastic method and the MEXE method are used to investigate the significance of factors such as fill cover, ring thickness and effective width of arch barrel, and their effect upon the load-carrying capacity predictions in short and long span arches. Conclusions are drawn which establish directions of new research and offer guidance to assessors of short and long span masonry arch bridges

    Biodegradable Polylactic Acid (PLA) Microstructures for Scaffold Applications

    Get PDF
    In this research, we present a simple and cost effective soft lithographic process to fabricate PLA scaffolds for tissue engineering. In which, the negative photoresist JSR THB-120N was spun on a glass subtract followed by conventional UV lithographic processes to fabricate the master to cast the PDMS elastomeric mold. A thin poly(vinyl alcohol) (PVA) layer was used as a mode release such that the PLA scaffold can be easily peeled off. The PLA precursor solution was then cast onto the PDMS mold to form the PLA microstructures. After evaporating the solvent, the PLA microstructures can be easily peeled off from the PDMS mold. Experimental results show that the desired microvessels scaffold can be successfully transferred to the biodegradable polymer PLA.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing
    corecore