17,058 research outputs found

    Classical Extended Conformal Algebras Associated with Constrained KP Hierarchy

    Full text link
    We examine the conformal property of the second Hamiltonian structure of constrained KP hierarchy derived by Oevel and Strampp. We find that it naturallygives a family of nonlocal extended conformal algebras. We give two examples of such algebras and find that they are similar to Bilal's V algebra. By taking a gauge transformation one can map the constrained KP hierarchy to Kuperschmidt's nonstandard Lax hierarchy. We consider the second Hamiltonian structure in this representation. We show that after mapping the Lax operator to a pure differential operator the second structure becomes the sum of the second and the third Gelfand-Dickey brackets defined by this differential operator. We show that this Hamiltonian structure defines the W-U(1)-Kac-Moody algebra by working out its conformally covariant form.Comment: NHCU-HEP-94-28, 19 pages (Plain TeX

    Flight Flutter Testing of Rotary Wing Aircraft Using a Control System Oscillation Technique

    Get PDF
    A flight flutter testing technique is described in which the rotor controls are oscillated by series actuators to excite the rotor and airframe modes of interest, which are then allowed to decay. The moving block technique is then used to determine the damped frequency and damping variation with rotor speed. The method proved useful for tracking the stability of relatively well damped modes. The results of recently completed flight tests of an experimental soft-in-plane rotor are used to illustrate the technique. Included is a discussion of the application of this technique to investigation of the propeller whirl flutter stability characteristics of the NASA/Army XV-15 VTOL tilt rotor research aircraft

    Phase diagram of doped BaFe2_2As2_2 superconductor under broken C4C_4 symmetry

    Full text link
    We develop a minimal multiorbital tight-binding model with realistic hopping parameters. The model breaks the symmetry of the tetragonal point group by lowering it from C4C_4 to D2dD_{2d}, which accurately describes the Fermi surface evolution of the electron-doped BaFe2x_{2-x}Cox_xAs2_2 and hole-doped Ba1y_{1-y}Ky_yFe2_2As2_2 compounds. An investigation of the phase diagram with a mean-field tt-UU-VV Bogoliubov-de Gennes Hamiltonian results in agreement with the experimentally observed electron- and hole-doped phase diagram with only one set of tt, UU and VV parameters. Additionally, the self-consistently calculated superconducting order parameter exhibits s±s^\pm-wave pairing symmetry with a small d-wave pairing admixture in the entire doping range, % The superconducting s±+ds^\pm + d-wave order parameter which is the subtle result of the weakly broken symmetry and competing interactions in the multiorbital mean-field Hamiltonian

    Emergent topological mirror insulator in t2g-orbital systems

    Full text link
    The electronic band structure of iron pnictides exhibits four Dirac cones, which are due to crystal symmetry and orbital bonding orientation. This hallmark signature presents the pnictide family as an ideal candidate in the search for quasi-two-dimensional topological crystalline insulators. In this report, we explore interaction-induced topological phases which cannot be described by conventional local order parameters. Based on a model Hamiltonian our symmetry analysis shows that sponta- neous novel topological phases may be realized in compounds with tetragonal crystal field symmetry, where the electrons occupy the two degenerate t2g energy levels at low temperature. We identify two stable topological phases in the ground state, which emerge from spontaneous orbital current order. These currents are driven by electronic correlations caused by inter-orbital Coulomb interactions. The first topological phase is an anomalous orbital Hall phase, characterized by a nonzero Chern number, while the second topological phase has a vanishing Chern number, though with an extra Z2-like invariant that preserves parity. More specifically, the interaction-induced novel phase of the quasi-two-dimensional topological crystalline insulator is protected by mirror reflection symmetries and therefore may be realized in pnictides

    Discovery of X-ray pulsations from "next Geminga" - PSR J1836+5925

    Get PDF
    We report the X-ray pulsation of ~173.3 ms for the "next Geminga", PSR J1836+5925, with recent XMM-Newton investigations. The X-ray periodicity is consistent wtih the gamma-ray ephemeris at the same epoch. The X-ray folded light curve has a sinusoidal structure which is different from the double-peaked gamma-ray pulse profile. We have also analysed the X-ray phase-averaged spectra which shows the X-ray emission from PSR J1836+5925 is thermal dominant. This suggests the X-ray pulsation mainly originates from the modulated hot spot on the stellar surface.Comment: 7 pages, 3 figures, 1 table, accepted for publication in ApJ Lette

    Gait Verification using Knee Acceleration Signals

    Get PDF
    A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively

    Disorder effects in multiorbital s±s_{\pm}-wave superconductors: Implications for Zn-doped BaFe2_2As2_2 compounds

    Full text link
    Recent experiments on Zn-doped 122-type iron pnictides, Ba(Fe1xy_{1-x-y}Coy_yZnx_x)2_2As2_2, are challenging our understanding of electron doping the 122s and the interplay between doping and impurity scattering. To resolve this enigma, we investigate the disorder effects of nonmagnetic Zn impurities in the strong (unitary) scattering limit on various properties of the system in the s±s_{\pm}-wave superconducting pairing state. The lattice Bogoliubov-de Gennes equation (BdG) is solved self-consistently based on a minimal two-orbital model with an extended range of impurity concentrations. We find that Zn impurity is best modeled as a defect, where charge is mainly localized, but scattering is extended over a few lattice sites. With increasing Zn concentration the density of states shows a gradual filling of the gap, revealing the impurity-induced pair breaking effect. Moreover, both the disorder configuration-averaged superconducting order parameter and the superfluid density are dramatically suppressed towards the dirty limit, indicating the violation of the Anderson theorem for conventional s-wave superconductors and the breakdown of the Abrikosov-Gorkov theory for impurity-averaged Green's functions. Furthermore, we find that the superconducting phase is fully suppressed close to the critical impurity concentration of roughly nimp10n_\text{imp}\approx 10%, in agreement with recent experiments.Comment: 12 pages, 7 figures, v2 with figure revise
    corecore