153,887 research outputs found

    Dynamics of a hole in the large--U Hubbard model: a Feynman diagram approach

    Full text link
    We study the dynamics of a single hole in an otherwise half--filled two--dimensional Hubbard model by introducing a nonlocal Bogolyubov transformation in the antiferromagnetic state. This allows us to rewrite the Hamiltonian in a form that makes a separation between high--energy processes (involving double--occupancy) and low--energy physics possible. A diagrammatic scheme is developped that allows for a systematic study of the different processes delocalizing a carrier in the antiferromagnetic state. In particular, the so--called Trugman process, important if transverse spin fluctuations are neglected, is studied and is shown to be dominated by the leading vertex corrections. We analyze the dynamics of a single hole both in the Ising limit and with spin fluctuations. The results are compared with previous theories as well as with recent exact small--cluster calculations, and we find good agreement. The formalism establishes a link between weak and strong coupling methodologies.Comment: Latex 34pages, Orsay Preprint, submitted to Phys. Rev.

    Fuzzy Chance-constrained Programming Based Security Information Optimization for Low Probability of Identification Enhancement in Radar Network Systems

    Get PDF
    In this paper, the problem of low probability of identification (LPID) improvement for radar network systems is investigated. Firstly, the security information is derived to evaluate the LPID performance for radar network. Then, without any prior knowledge of hostile intercept receiver, a novel fuzzy chance-constrained programming (FCCP) based security information optimization scheme is presented to achieve enhanced LPID performance in radar network systems, which focuses on minimizing the achievable mutual information (MI) at interceptor, while the attainable MI outage probability at radar network is enforced to be greater than a specified confidence level. Regarding to the complexity and uncertainty of electromagnetic environment in the modern battlefield, the trapezoidal fuzzy number is used to describe the threshold of achievable MI at radar network based on the credibility theory. Finally, the FCCP model is transformed to a crisp equivalent form with the property of trapezoidal fuzzy number. Numerical simulation results demonstrating the performance of the proposed strategy are provided

    Conditions for Nondistortion Interrogation of Quantum System

    Full text link
    Under some physical considerations, we present a universal formulation to study the possibility of localizing a quantum object in a given region without disturbing its unknown internal state. When the interaction between the object and probe wave function takes place only once, we prove the necessary and sufficient condition that the object's presence can be detected in an initial state preserving way. Meanwhile, a conditioned optimal interrogation probability is obtained.Comment: 5 pages, Revtex, 1 figures, Presentation improved, corollary 1 added. To appear in Europhysics Letter

    Manipulating Memory Associations Changes Decision-making Preferences in a Preconditioning Task

    Get PDF
    Memories of past experiences can guide our decisions. Thus, if memories are undermined or distorted, decision making should be affected. Nevertheless, little empirical research has been done to examine the role of memory in reinforcement decision-making . We hypothesized that if memories guide choices in a conditioning decision-making task, then manipulating these memories would result in a change of decision preferences to gain reward. We manipulated participants’ memories by providing false feedback that their memory associations were wrong before they made decisions that could lead them to win money . Participants’ memory ratings decreased significantly after receiving false feedback. More importantly, we found that false feedback led participants’ decision bias to disappear after their memory associations were undermined . Our results suggest that reinforcement decision-making can be altered by fasle feedback on memories . The results are discussed using memory mechanisms such as spreading activation theories

    Quantum fluctuations in the spiral phase of the Hubbard model

    Full text link
    We study the magnetic excitations in the spiral phase of the two--dimensional Hubbard model using a functional integral method. Spin waves are strongly renormalized and a line of near--zeros is observed in the spectrum around the spiral pitch ±Q\pm{\bf Q}. The possibility of disordered spiral states is examined by studying the one--loop corrections to the spiral order parameter. We also show that the spiral phase presents an intrinsic instability towards an inhomogeneous state (phase separation, CDW, ...) at weak doping. Though phase separation is suppressed by weak long--range Coulomb interactions, the CDW instability only disappears for sufficiently strong Coulomb interaction.Comment: Figures are NOW appended via uuencoded postscript fil
    corecore