8,344 research outputs found
Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities
Shifting electrically a magnetic domain wall (DW) by the spin transfer
mechanism is one of the future ways foreseen for the switching of spintronic
memories or registers. The classical geometries where the current is injected
in the plane of the magnetic layers suffer from a poor efficiency of the
intrinsic torques acting on the DWs. A way to circumvent this problem is to use
vertical current injection. In that case, theoretical calculations attribute
the microscopic origin of DW displacements to the out-of-plane (field-like)
spin transfer torque. Here we report experiments in which we controllably
displace a DW in the planar electrode of a magnetic tunnel junction by vertical
current injection. Our measurements confirm the major role of the out-of-plane
spin torque for DW motion, and allow to quantify this term precisely. The
involved current densities are about 100 times smaller than the one commonly
observed with in-plane currents. Step by step resistance switching of the
magnetic tunnel junction opens a new way for the realization of spintronic
memristive devices
Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion
The ability to transduce non-classical states of light from one wavelength to
another is a requirement for integrating disparate quantum systems that take
advantage of telecommunications-band photons for optical fiber transmission of
quantum information and near-visible, stationary systems for manipulation and
storage. In addition, transducing a single-photon source at 1.3 {\mu}m to
visible wavelengths for detection would be integral to linear optical quantum
computation due to the challenges of detection in the near-infrared. Recently,
transduction at single-photon power levels has been accomplished through
frequency upconversion, but it has yet to be demonstrated for a true
single-photon source. Here, we transduce the triggered single-photon emission
of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection
(internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm
signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a
photon anti-bunched second-order intensity correlation, g^(2)(t), that shows
the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure
Spleen Tyrosine Kinase (Syk) Regulates Systemic Lupus Erythematosus (SLE) T Cell Signaling
Engagement of the CD3/T cell receptor complex in systemic lupus erythematosus (SLE) T cells involves Syk rather than the zeta-associated protein. Because Syk is being considered as a therapeutic target we asked whether Syk is central to the multiple aberrantly modulated molecules in SLE T cells. Using a gene expression array, we demonstrate that forced expression of Syk in normal T cells reproduces most of the aberrantly expressed molecules whereas silencing of Syk in SLE T cells normalizes the expression of most abnormally expressed molecules. Protein along with gene expression modulation for select molecules was confirmed. Specifically, levels of cytokine IL-21, cell surface receptor CD44, and intracellular molecules PP2A and OAS2 increased following Syk overexpression in normal T cells and decreased after Syk silencing in SLE T cells. Our results demonstrate that levels of Syk affect the expression of a number of enzymes, cytokines and receptors that play a key role in the development of disease pathogenesis in SLE and provide support for therapeutic targeting in SLE patients
Rupture by damage accumulation in rocks
The deformation of rocks is associated with microcracks nucleation and
propagation, i.e. damage. The accumulation of damage and its spatial
localization lead to the creation of a macroscale discontinuity, so-called
"fault" in geological terms, and to the failure of the material, i.e. a
dramatic decrease of the mechanical properties as strength and modulus. The
damage process can be studied both statically by direct observation of thin
sections and dynamically by recording acoustic waves emitted by crack
propagation (acoustic emission). Here we first review such observations
concerning geological objects over scales ranging from the laboratory sample
scale (dm) to seismically active faults (km), including cliffs and rock masses
(Dm, hm). These observations reveal complex patterns in both space (fractal
properties of damage structures as roughness and gouge), time (clustering,
particular trends when the failure approaches) and energy domains (power-law
distributions of energy release bursts). We use a numerical model based on
progressive damage within an elastic interaction framework which allows us to
simulate these observations. This study shows that the failure in rocks can be
the result of damage accumulation
Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA
In eukaryotes, the Cdt1-bound replicative helicase core MCM2-7 is loaded onto DNA by the ORC-Cdc6 ATPase to form a prereplicative complex (pre-RC) with an MCM2-7 double hexamer encircling DNA. Using purified components in the presence of ATP-γS, we have captured in vitro an intermediate in pre-RC assembly that contains a complex between the ORC-Cdc6 and Cdt1-MCM2-7 heteroheptamers called the OCCM. Cryo-EM studies of this 14-subunit complex reveal that the two separate heptameric complexes are engaged extensively, with the ORC-Cdc6 N-terminal AAA+ domains latching onto the C-terminal AAA+ motor domains of the MCM2-7 hexamer. The conformation of ORC-Cdc6 undergoes a concerted change into a right-handed spiral with helical symmetry that is identical to that of the DNA double helix. The resulting ORC-Cdc6 helicase loader shows a notable structural similarity to the replication factor C clamp loader, suggesting a conserved mechanism of action
Modeling recursive RNA interference.
An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments
Type F congenital quadricuspid aortic valve: A very rare case diagnosed by 3-dimenional transoesophageal echocardiography
Congenital quadricuspid aortic valve (QAV) is a rare cardiac anomaly. Several different anatomical variations of a quadricuspid aortic valve have been described. Aortic regurgitation is the predominant valvular dysfunction associated with QAV and patients tend to present in their 5(th) or 6(th) decade of life. This anomaly is rarely picked up by transthoracic echocardiogram (TTE). A comprehensive transoesophageal echocardiography (TOE) study is more likely to diagnose it. We describe a very rare type of QAV - Type F in a 52-year-old lady who presented with symptoms of shortness of breath and pre-syncope. We include TOE images and intra-operative valve images
De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development
Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD
Identification and functional characterisation of CRK12:CYC9, a novel cyclin-dependent kinase (CDK)-cyclin complex in Trypanosoma brucei
The protozoan parasite, Trypanosoma brucei, is spread by the tsetse fly and causes trypanosomiasis in humans and animals. Both the life cycle and cell cycle of the parasite are complex. Trypanosomes have eleven cdc2-related kinases (CRKs) and ten cyclins, an unusually large number for a single celled organism. To date, relatively little is known about the function of many of the CRKs and cyclins, and only CRK3 has previously been shown to be cyclin-dependent in vivo. Here we report the identification of a previously uncharacterised CRK:cyclin complex between CRK12 and the putative transcriptional cyclin, CYC9. CRK12:CYC9 interact to form an active protein kinase complex in procyclic and bloodstream T. brucei. Both CRK12 and CYC9 are essential for the proliferation of bloodstream trypanosomes in vitro, and we show that CRK12 is also essential for survival of T. brucei in a mouse model, providing genetic validation of CRK12:CYC9 as a novel drug target for trypanosomiasis. Further, functional characterisation of CRK12 and CYC9 using RNA interference reveals roles for these proteins in endocytosis and cytokinesis, respectively
- …
