514 research outputs found

    Research opportunities with compact accelerator-driven neutron sources

    Get PDF
    Since the discovery of the neutron in 1934 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator–driven neutron sources (CANS) are becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS

    Magnetic Ground State of Pr0.89_{0.89}LaCe0.11_{0.11}CuO4+αδ_{4+\alpha-\delta} with Varied Oxygen Depletion Probed by Muon Spin Relaxation

    Full text link
    The magnetic ground state of an electron-doped cuprate superconductor Pr1x_{1-x}LaCex_xCuO4+αδ_{4+\alpha-\delta} (x=0.11,α0.04x=0.11, \alpha\simeq0.04) has been studied by means of muon spin rotation/relaxation (\msr) over a wide variety of oxygen depletion, 0.03δ0.120.03\le\delta\le0.12. Appearance of weak random magnetism over entire crystal volume has been revealed by a slow exponential relaxation. The absence of δ\delta-dependence for the random magnetism and the multiplet pattern of muon Knight shift at higher fields strongly suggest that the random moments are associated with excited Pr3+^{3+} ions under crystal electric field.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Linear Response Calculations of Spin Fluctuations

    Full text link
    A variational formulation of the time--dependent linear response based on the Sternheimer method is developed in order to make practical ab initio calculations of dynamical spin susceptibilities of solids. Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the approach is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The results are found to be consistent with experiment and are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing (~1200dpi) is desire

    The optical response of Ba_{1-x}K_xBiO_3: Evidence for an unusual coupling mechanism of superconductivity?

    Full text link
    We have analysed optical reflectivity data for Ba_{1-x}K_xBiO_3 in the far-infrared region using Migdal-Eliashberg theory and found it inconsistent with standard electron-phonon coupling: Whereas the superconducting state data could be explained using moderate coupling, \lambda=0.7, the normal state properties indicate \lambda \le 0.2. We have found that such behaviour could be understood using a simple model consisting of weak standard electron-phonon coupling plus weak coupling to an unspecified high energy excitation near 0.4 eV. This model is found to be in general agreement with the reflectivity data, except for the predicted superconducting gap size. The additional high energy excitation suggests that the dominant coupling mechanism in Ba_{1-x}K_xBiO_3 is not standard electron-phonon.Comment: 5 pages REVTex, 5 figures, 32 refs, accepted for publication in Phys. Rev.

    Phase diagram of the one-dimensional extended attractive Hubbard model for large nearest-neighbor repulsion

    Full text link
    We consider the extended Hubbard model with attractive on-site interaction U and nearest-neighbor repulsions V. We construct an effective Hamiltonian H_{eff} for hopping t<<V and arbitrary U<0. Retaining the most important terms, H_{eff} can be mapped onto two XXZ models, solved by the Bethe ansatz. The quantum phase diagram shows two Luttinger liquid phases and a region of phase separation between them. For density n<0.422 and U<-4, singlet superconducting correlations dominate at large distances. For some parameters, the results are in qualitative agreement with experiments in BaKBiO.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Magnons in real materials from density-functional theory

    Full text link
    We present an implementation of the adiabatic spin-wave dynamics of Niu and Kleinman. This technique allows to decouple the spin and charge excitations of a many-electron system using a generalization of the adiabatic approximation. The only input for the spin-wave equations of motion are the energies and Berry curvatures of many-electron states describing frozen spin spirals. The latter are computed using a newly developed technique based on constrained density-functional theory, within the local spin density approximation and the pseudo-potential plane-wave method. Calculations for iron show an excellent agreement with experiments.Comment: 1 LaTeX file and 1 postscript figur

    Electron-phonon coupling induced pseudogap and the superconducting transition in Ba0.67K0.33BiO3

    Full text link
    We study the single particle density of states (DOS) across the superconducting transition (Tc = 31 K) in single-crystal Ba0.67K0.33BiO3 using ultrahigh resolution angle-integrated photoemission spectroscopy. The superconducting gap opens with a pile-up in the DOS, Delta(5.3 K) = 5.2 meV and 2Delta(0)/kBTc = 3.9. In addition, we observe a pseudogap below and above Tc, occurring as a suppression in intensity over an energy scale up to the breathing mode phonon(~ 70 meV). The results indicate electron-phonon coupling induces a pseudogap in Ba0.67K0.33BiO3.Comment: 5 pages with 4 figures, submitted to Phys. Rev. Let
    corecore