1,113 research outputs found

    The causal structure of spacetime is a parameterized Randers geometry

    Full text link
    There is a by now well-established isomorphism between stationary 4-dimensional spacetimes and 3-dimensional purely spatial Randers geometries - these Randers geometries being a particular case of the more general class of 3-dimensional Finsler geometries. We point out that in stably causal spacetimes, by using the (time-dependent) ADM decomposition, this result can be extended to general non-stationary spacetimes - the causal structure (conformal structure) of the full spacetime is completely encoded in a parameterized (time-dependent) class of Randers spaces, which can then be used to define a Fermat principle, and also to reconstruct the null cones and causal structure.Comment: 8 page

    Oscillatons formed by non linear gravity

    Full text link
    Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG) equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behaviour of the corresponding objects in non-linear gravity where the scalar field has been absorbed by means of the conformal mapping.Comment: Revtex file, 6 pages, 3 eps figure; matches version published in PR

    Carrier dynamics and coherent acoustic phonons in nitride heterostructures

    Full text link
    We model generation and propagation of coherent acoustic phonons in piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode structure and compute the time resolved reflectivity signal in simulated pump-probe experiments. Carriers are created in the InGaN wells by ultrafast pumping below the GaN band gap and the dynamics of the photoexcited carriers is treated in a Boltzmann equation framework. Coherent acoustic phonons are generated in the quantum well via both deformation potential electron-phonon and piezoelectric electron-phonon interaction with photogenerated carriers, with the latter mechanism being the dominant one. Coherent longitudinal acoustic phonons propagate into the structure at the sound speed modifying the optical properties and giving rise to a giant oscillatory differential reflectivity signal. We demonstrate that coherent optical control of the differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure

    The geometric sense of R. Sasaki connection

    Full text link
    For the Riemannian manifold MnM^{n} two special connections on the sum of the tangent bundle TMnTM^{n} and the trivial one-dimensional bundle are constructed. These connections are flat if and only if the space MnM^{n} has a constant sectional curvature ±1\pm 1. The geometric explanation of this property is given. This construction gives a coordinate free many-dimensional generalization of the connection from the paper: R. Sasaki 1979 Soliton equations and pseudospherical surfaces, Nuclear Phys., {\bf 154 B}, pp. 343-357. It is shown that these connections are in close relation with the imbedding of MnM^{n} into Euclidean or pseudoeuclidean (n+1)(n+1)-dimension spaces.Comment: 7 pages, the key reference to the paper of Min-Oo is included in the second versio

    Classical Topological Order in Kagome Ice

    Full text link
    We examine the onset of classical topological order in a nearest-neighbor kagome ice model. Using Monte Carlo simulations, we characterize the topological sectors of the groundstate using a non-local cut measure which circumscribes the toroidal geometry of the simulation cell. We demonstrate that simulations which employ global loop updates that are allowed to wind around the periodic boundaries cause the topological sector to fluctuate, while restricted local loop updates freeze the simulation into one topological sector. The freezing into one topological sector can also be observed in the susceptibility of the real magnetic spin vectors projected onto the kagome plane. The ability of the susceptibility to distinguish between fluctuating and non-fluctuating topological sectors should motivate its use as a local probe of topological order in a variety of related model and experimental systems.Comment: 17 pages, 9 figure

    Quantum Cosmology for a Quadratic Theory of Gravity

    Full text link
    For pure fourth order (LR2{\cal{L}} \propto R^2) quantum cosmology the Wheeler-DeWitt equation is solved exactly for the closed homogeneous and isotropic model. It is shown that by imposing as boundary condition that Ψ=0\Psi = 0 at the origin of the universe the wave functions behave as suggested by Vilenkin.Comment: 13 pages, latex,no figure

    Variational formulation of ideal fluid flows according to gauge principle

    Full text link
    On the basis of the gauge principle of field theory, a new variational formulation is presented for flows of an ideal fluid. The fluid is defined thermodynamically by mass density and entropy density, and its flow fields are characterized by symmetries of translation and rotation. The rotational transformations are regarded as gauge transformations as well as the translational ones. In addition to the Lagrangians representing the translation symmetry, a structure of rotation symmetry is equipped with a Lagrangian ΛA\Lambda_A including the vorticity and a vector potential bilinearly. Euler's equation of motion is derived from variations according to the action principle. In addition, the equations of continuity and entropy are derived from the variations. Equations of conserved currents are deduced as the Noether theorem in the space of Lagrangian coordinate \ba. Without ΛA\Lambda_A, the action principle results in the Clebsch solution with vanishing helicity. The Lagrangian ΛA\Lambda_A yields non-vanishing vorticity and provides a source term of non-vanishing helicity. The vorticity equation is derived as an equation of the gauge field, and the ΛA\Lambda_A characterizes topology of the field. The present formulation is comprehensive and provides a consistent basis for a unique transformation between the Lagrangian \ba space and the Eulerian \bx space. In contrast, with translation symmetry alone, there is an arbitrariness in the ransformation between these spaces.Comment: 34 pages, Fluid Dynamics Research (2008), accepted on 1st Dec. 200

    Anti-self-dual Riemannian metrics without Killing vectors, can they be realized on K3?

    Full text link
    Explicit Riemannian metrics with Euclidean signature and anti-self dual curvature that do not admit any Killing vectors are presented. The metric and the Riemann curvature scalars are homogenous functions of degree zero in a single real potential and its derivatives. The solution for the potential is a sum of exponential functions which suggests that for the choice of a suitable domain of coordinates and parameters it can be the metric on a compact manifold. Then, by the theorem of Hitchin, it could be a class of metrics on K3K3, or on surfaces whose universal covering is K3K3.Comment: Misprints in eqs.(9-11) corrected. Submitted to Classical and Quantum Gravit
    corecore