48,829 research outputs found
Purification through Zeno-like Measurements
A series of frequent measurements on a quantum system (Zeno-like
measurements) is shown to result in the ``purification'' of another quantum
system in interaction with the former. Even though the measurements are
performed on the former system, their effect drives the latter into a pure
state, irrespectively of its initial (mixed) state, provided certain conditions
are satisfied.Comment: REVTeX4, 4 pages, 1 figure; to be published in Phys. Rev. Lett.
(2003
Abelian Dominance in Wilson Loops
It has been conjectured that the Abelian projection of QCD is responsible for
the confinement of color. Using a gauge independent definition of the Abelian
projection which does {\it not} employ any gauge fixing, we provide a strong
evidence for the Abelian dominance in Wilson loop integral. In specific we
prove that the gauge potential which contributes to the Wilson loop integral is
precisely the one restricted by the Abelian projection.Comment: 4 pages, no figure, revtex. Phys. Rev. D in pres
Baryon Masses in Partially Quenched Heavy Hadron Chiral Perturbation Theory
The masses of baryons containing a heavy quark are calculated to
next-to-leading order in partially quenched heavy hadron chiral perturbation
theory. Calculations are performed for three light flavors in the isospin limit
and additionally for two light non-degenerate flavors. The results presented
are necessary for extrapolating lattice QCD and partially quenched lattice QCD
calculations of the heavy hadron masses.Comment: 20 pages, 2 figures, RevTex
Emergence of canonical ensembles from pure quantum states
We consider a system weakly interacting with a bath as a thermodynamic
setting to establish a quantum foundation of statistical physics. It is shown
that even if the composite system is initially in an arbitrary nonequilibrium
pure quantum state, the unitary dynamics of a generic weak interaction almost
always drives the subsystem into the canonical ensemble, in the usual sense of
typicality. A crucial step is taken by assuming that the matrix elements of the
interaction Hamiltonian have random phases, while their amplitudes are left
unrestricted
Color Reflection Invariance and Monopole Condensation in QCD
We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum
of the one-loop effective action of SU(2) QCD, and point out a critical defect
in the calculation of the functional determinant of the gluon loop in the SNO
effective action. We prove that the gauge invariance, in particular the color
reflection invariance, exclude the unstable tachyonic modes from the gluon loop
integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl
Synthesizing Program Input Grammars
We present an algorithm for synthesizing a context-free grammar encoding the
language of valid program inputs from a set of input examples and blackbox
access to the program. Our algorithm addresses shortcomings of existing grammar
inference algorithms, which both severely overgeneralize and are prohibitively
slow. Our implementation, GLADE, leverages the grammar synthesized by our
algorithm to fuzz test programs with structured inputs. We show that GLADE
substantially increases the incremental coverage on valid inputs compared to
two baseline fuzzers
A 42.3-43.6 GHz spectral survey of Orion BN/KL: First detection of the v=0 J=1-0 line from the isotopologues 29SiO and 30SiO
We have surveyed molecular line emission from Orion BN/KL from 42.3 to 43.6
GHz with the Green Bank Telescope. Sixty-seven lines were identified and
ascribed to 13 different molecular species. The spectrum at 7 mm is dominated
by SiO, SO2, CH3OCH3, and C2H5CN. Five transitions have been detected from the
SiO isotopologues 28SiO, 29SiO, and 30SiO.
We report here for the first time the spectra of the 29SiO and 30SiO v=0
J=1-0 emission in Orion BN/KL, and we show that they have double-peaked
profiles with velocity extents similar to the main isotopologue. The main
motivation for the survey was the search of high-velocity (100-1000 km/s)
outflows in the BN/KL region as traced by SiO Doppler components. Some of the
unidentified lines in principle could be high-velocity SiO features, but
without imaging data their location cannot be established.
Wings of emission are present in the v=0 28SiO, 29SiO and 30SiO profiles, and
we suggest that the v=0 emission from the three isotopologues might trace a
moderately high-velocity (~30-50 km/s) component of the flows around the
high-mass protostar Source I in the Orion BN/KL region.
We also confirm the 7 mm detection of a complex oxygen-bearing species,
acetone (CH3COCH3), which has been recently observed towards the hot core at 3
mm, and we have found further indications of the presence of long cyanopolyynes
(HC5N and HC7N) in the quiescent cold gas of the extended ridge.Comment: 27 pages, 3 figures, accepted by Ap
Theoretical framework of entangled-photon generation from biexcitons in nano-to-bulk crossover regime with planar geometry
We have constructed a theoretical framework of the biexciton-resonant
hyperparametric scattering for the pursuit of high-power and high-quality
generation of entangled photon pairs. Our framework is applicable to
nano-to-bulk crossover regime where the center-of-mass motion of excitons and
biexcitons is confined. Material surroundings and the polarization correlation
of generated photons can be considered. We have analyzed the entangled-photon
generation from CuCl film, by which ultraviolet entangled-photon pairs are
generated, and from dielectric microcavity embedding a CuCl layer. We have
revealed that in the nano-to-bulk crossover regime we generally get a high
performance from the viewpoint of statistical accuracy, and the generation
efficiency can be enhanced by the optical cavity with maintaining the high
performance. The nano-to-bulk crossover regime has a variety of degrees of
freedom to tune the entangled-photon generation, and the scattering spectra
explicitly reflect quantized exciton-photon coupled modes in the finite
structure.Comment: 18 pages, 10 figure
Evidence for nodeless superconducting gap in NaFeCoAs from low-temperature thermal conductivity measurements
The thermal conductivity of optimally doped NaFeCoAs
( 20 K) and overdoped NaFeCoAs ( 11 K)
single crystals were measured down to 50 mK. No residual linear term
is found in zero magnetic field for both compounds, which is an
evidence for nodeless superconducting gap. Applying field up to = 9 T
() does not noticeably increase in
NaFeCoAs, which is consistent with multiple isotropic gaps
with similar magnitudes. The of overdoped
NaFeCoAs shows a relatively faster field dependence,
indicating the increase of the ratio between the magnitudes of different gaps,
or the enhancement of gap anisotropy upon increasing doping.Comment: 5 pages, 4 figure
- …
