103,804 research outputs found
First-principles study of native point defects in Bi2Se3
Using first-principles method within the framework of the density functional
theory, we study the influence of native point defect on the structural and
electronic properties of BiSe. Se vacancy in BiSe is a double
donor, and Bi vacancy is a triple acceptor. Se antisite (Se) is always
an active donor in the system because its donor level ((+1/0))
enters into the conduction band. Interestingly, Bi antisite(Bi) in
BiSe is an amphoteric dopant, acting as a donor when
0.119eV (the material is typical p-type) and as an acceptor when
0.251eV (the material is typical n-type). The formation energies
under different growth environments (such as Bi-rich or Se-rich) indicate that
under Se-rich condition, Se is the most stable native defect independent
of electron chemical potential . Under Bi-rich condition, Se vacancy
is the most stable native defect except for under the growth window as
0.262eV (the material is typical n-type) and
-0.459eV(Bi-rich), under such growth windows one
negative charged Bi is the most stable one.Comment: 7 pages, 4 figure
Radiance and Doppler shift distributions across the network of the quiet Sun
The radiance and Doppler-shift distributions across the solar network provide
observational constraints of two-dimensional modeling of transition-region
emission and flows in coronal funnels. Two different methods, dispersion plots
and average-profile studies, were applied to investigate these distributions.
In the dispersion plots, we divided the entire scanned region into a bright and
a dark part according to an image of Fe xii; we plotted intensities and Doppler
shifts in each bin as determined according to a filtered intensity of Si ii. We
also studied the difference in height variations of the magnetic field as
extrapolated from the MDI magnetogram, in and outside network. For the
average-profile study, we selected 74 individual cases and derived the average
profiles of intensities and Doppler shifts across the network. The dispersion
plots reveal that the intensities of Si ii and C iv increase from network
boundary to network center in both parts. However, the intensity of Ne viii
shows different trends, namely increasing in the bright part and decreasing in
the dark part. In both parts, the Doppler shift of C iv increases steadily from
internetwork to network center. The average-profile study reveals that the
intensities of the three lines all decline from the network center to
internetwork region. The binned intensities of Si ii and Ne viii have a good
correlation. We also find that the large blue shift of Ne viii does not
coincide with large red shift of C iv. Our results suggest that the network
structure is still prominent at the layer where Ne viii is formed in the quiet
Sun, and that the magnetic structures expand more strongly in the dark part
than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure
NIR Luminosity Function of Galaxies in Close Major-Merger Pairs and Mass Dependence of Merger Rate
A sample of close major-merger pairs (projected separation kpc, band magnitude difference mag) is selected from the matched 2MASS-2dFGRS catalog of Cole et al.
(2001). The pair primaries are brighter than mag. After
corrections for various biases, the comparison between counts in the paired
galaxy sample and counts in the parent sample shows that for the local `M*
galaxies' sampled by flux limited surveys, the fraction of galaxies in the
close major-merger pairs is 1.70. Using 38 paired galaxies in the
sample, a band luminosity function (LF) is calculated. This is the
first unbiased LF for a sample of objectively defined interacting/merging
galaxies in the local universe, while all previously determined LFs of paired
galaxies are biased by mistreating paired galaxies as singles. A stellar mass
function (MF) is translated from the LF. Compared to the LF/MF of 2MASS
galaxies, a differential pair fraction function is derived. The results suggest
a trend in the sense that less massive galaxies may have lower chance to be
involved in close major-merger pairs than more massive galaxies. The algorithm
presented in this paper can be easily applied to much larger samples of 2MASS
galaxies with redshifts in near future.Comment: Accepted by ApJL, 16 pages, 2 figure
A cusp electron gun for millimeter wave gyrodevices
The experimental results of a thermionic cusp electron gun, to drive millimeter and submillimeter wave harmonic gyrodevices, are reported in this paper. Using a "smooth" magnetic field reversal formed by two coils this gun generated an annular-shaped, axis-encircling electron beam with 1.5 A current, and an adjustable velocity ratio alpha of up to 1.56 at a beam voltage of 40 kV. The beam cross-sectional shape and transported beam current were measured by a witness plate technique and Faraday cup, respectively. These measured results were found to be in excellent agreement with the simulated results using the three-dimensional code MAGIC
A new image decomposition and reconstruction approach -- adaptive fourier decomposition
© Springer International Publishing Switzerland 2015. Fourier has been a powerful mathematical tool for representing a signal into an expression consist of sin and cos. Recently a new developed signal decomposition theory is proposed by Pro. Tao Qian named Adaptive Fourier Decomposition, which has the advantage in time frequency over Fourier decomposition and without the need for a fixed window size problem such as short-time frequency transform. Studies show that AFD can fast decompose signals into positive-frequency functions with good analytical properties. In this paper we apply AFD into image decomposition and reconstruction area first time in the literature, which shows a promising result and gives the fundamental prospect for image compression
- …
