119,593 research outputs found
Recommended from our members
Studies on Temperature and Strain Sensitivities of a Few-mode Critical Wavelength Fiber Optic Sensor
This paper studied the relationship between the temperature/strain wavelength sensitivity of a fiber optic in-line Mach-Zehnder Interferometer (MZI) sensor and the wavelength separation of the measured wavelength to the critical wavelength (CWL) in a CWL-existed interference spectrum formed by interference between LP01 and LP02 modes. The in-line MZI fiber optic sensor has been constructed by splicing a section of specially designed few-mode fiber (FMF), which support LP01 and LP02 modes propagating in the fiber, between two pieces of single mode fiber. The propagation constant difference, Δβ, between the LP01 and LP02 modes, changes non-monotonously with wavelength and reaches a maximum at the CWL. As a result, in sensor operation, peaks on the different sides of the CWL then shift in opposite directions, and the associated temperature/strain sensitivities increase significantly when the measured wavelength points become close to the CWL, from both sides of the CWL. A theoretical analysis carried out has predicted that with this specified FMF sensor approach, the temperature/strain wavelength sensitivities are governed by the wavelength difference between the measured wavelength and the CWL. This conclusion was seen to agree well with the experimental results obtained. Combining the wavelength shifts of the peaks and the CWL in the transmission spectrum of the SFS structure, this study has shown that this approach forms the basis of effective designs of high sensitivity sensors for multi-parameter detection and offering a large measurement range to satisfy the requirements needed for better industrial measurements
Strangeness production in heavy ion collisions at SPS and RHIC within two-source statistical model
The experimental data on hadron yields and ratios in central Pb+Pb and Au+Au
collisions at SPS and RHIC energies, respectively, are analysed within a
two-source statistical model of an ideal hadron gas. These two sources
represent the expanding system of colliding heavy ions, where the hot central
fireball is embedded in a larger but cooler fireball. The volume of the central
source increases with rising bombarding energy. Results of the two-source model
fit to RHIC experimental data at midrapidity coincide with the results of the
one-source thermal model fit, indicating the formation of an extended fireball,
which is three times larger than the corresponding core at SPS.Comment: Talk at "Strange Quarks in Matter" Conference (Strangeness'2001),
September 2001, Frankfurt a.M., German
Shubnikov-de Haas oscillations of a single layer graphene under dc current bias
Shubnikov-de Haas (SdH) oscillations under a dc current bias are
experimentally studied on a Hall bar sample of single layer graphene. In dc
resistance, the bias current shows the common damping effect on the SdH
oscillations and the effect can be well accounted for by an elevated electron
temperature that is found to be linearly dependent on the current bias. In
differential resistance, a novel phase inversion of the SdH oscillations has
been observed with increasing dc bias, namely we observe the oscillation maxima
develop into minima and vice versa. Moreover, it is found that the onset
biasing current, at which a SdH extremum is about to invert, is linearly
dependent on the magnetic field of the SdH extrema. These observations are
quantitatively explained with the help of a general SdH formula.Comment: 5 pages, 4 figures, A few references adde
Determination of activation volumes of reversal in perpendicular media
We discuss a method for the determination of activation volumes of reversal in perpendicular media. This method does not require correction for the self-demagnetizing field normally associated with these media. This is achieved by performing time dependence measurements at a constant level of magnetization. From the difference in time taken for the magnetization to decay to a fixed value at two fields-separated by a small increment DeltaH, the activation volume can be determined. We report data for both CoCrPt alloy films and a multilayer film, typical of those materials under consideration for use as perpendicular media. We find activation volumes that are consistent with the hysteresis curves of the materials. The activation volume scales qualitatively with the exchange coupling. The alloy films have significantly lower activation volumes, implying that they would be capable of supporting a higher data density
Security improvement of using modified coherent state for quantum cryptography
Weak coherent states as a photon source for quantum cryptography have limit
in secure data rate and transmission distance because of the presence of
multi-photon events and loss in transmission line. Two-photon events in a
coherent state can be taken out by a two-photon interference scheme. We
investigate the security issue of utilizing this modified coherent state in
quantum cryptography. A 4 dB improvement in secure data rate or a nearly
two-fold increase in transmission distance over the coherent state are found.
With a recently proposed and improved encoding strategy, further improvement is
possible.Comment: 5 pages, 2 figures, to appear in Physical Review
CTMC calculations of electron capture and ionization in collisions of multiply charged ions with elliptical Rydberg atoms
We have performed classical trajectory Monte Carlo (CTMC) studies of electron
capture and ionization in multiply charged (Q=8) ion-Rydberg atom collisions at
intermediate impact velocities. Impact parallel to the minor and to the major
axis, respectively, of the initial Kepler electron ellipse has been
investigated. The important role of the initial electron momentum distribution
found for singly charged ion impact is strongly disminished for higher
projectile charge, while the initial spatial distribution remains important for
all values of Q studied.Comment: 3 pages, 5 figure
In-flight calibration of the Herschel-SPIRE instrument
SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194–671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards
A Deep Relevance Matching Model for Ad-hoc Retrieval
In recent years, deep neural networks have led to exciting breakthroughs in
speech recognition, computer vision, and natural language processing (NLP)
tasks. However, there have been few positive results of deep models on ad-hoc
retrieval tasks. This is partially due to the fact that many important
characteristics of the ad-hoc retrieval task have not been well addressed in
deep models yet. Typically, the ad-hoc retrieval task is formalized as a
matching problem between two pieces of text in existing work using deep models,
and treated equivalent to many NLP tasks such as paraphrase identification,
question answering and automatic conversation. However, we argue that the
ad-hoc retrieval task is mainly about relevance matching while most NLP
matching tasks concern semantic matching, and there are some fundamental
differences between these two matching tasks. Successful relevance matching
requires proper handling of the exact matching signals, query term importance,
and diverse matching requirements. In this paper, we propose a novel deep
relevance matching model (DRMM) for ad-hoc retrieval. Specifically, our model
employs a joint deep architecture at the query term level for relevance
matching. By using matching histogram mapping, a feed forward matching network,
and a term gating network, we can effectively deal with the three relevance
matching factors mentioned above. Experimental results on two representative
benchmark collections show that our model can significantly outperform some
well-known retrieval models as well as state-of-the-art deep matching models.Comment: CIKM 2016, long pape
On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials
The paper concerns - convergence to equilibrium for weak solutions of
the spatially homogeneous Boltzmann Equation for soft potentials (-4\le
\gm<0), with and without angular cutoff. We prove the time-averaged
-convergence to equilibrium for all weak solutions whose initial data have
finite entropy and finite moments up to order greater than 2+|\gm|. For the
usual -convergence we prove that the convergence rate can be controlled
from below by the initial energy tails, and hence, for initial data with long
energy tails, the convergence can be arbitrarily slow. We also show that under
the integrable angular cutoff on the collision kernel with -1\le \gm<0, there
are algebraic upper and lower bounds on the rate of -convergence to
equilibrium. Our methods of proof are based on entropy inequalities and moment
estimates.Comment: This version contains a strengthened theorem 3, on rate of
convergence, considerably relaxing the hypotheses on the initial data, and
introducing a new method for avoiding use of poitwise lower bounds in
applications of entropy production to convergence problem
- …
