9,812 research outputs found
GEMPAK: An arbitrary aircraft geometry generator
A computer program, GEMPAK, has been developed to aid in the generation of detailed configuration geometry. The program was written to allow the user as much flexibility as possible in his choices of configurations and the detail of description desired and at the same time keep input requirements and program turnaround and cost to a minimum. The program consists of routines that generate fuselage and planar-surface (winglike) geometry and a routine that will determine the true intersection of all components with the fuselage. This paper describes the methods by which the various geometries are generated and provides input description with sample input and output. Also included are descriptions of the primary program variables and functions performed by the various routines. The FORTRAN program GEMPAK has been used extensively in conjunction with interfaces to several aerodynamic and plotting computer programs and has proven to be an effective aid in the preliminary design phase of aircraft configurations
Detecting periodicity in experimental data using linear modeling techniques
Fourier spectral estimates and, to a lesser extent, the autocorrelation
function are the primary tools to detect periodicities in experimental data in
the physical and biological sciences. We propose a new method which is more
reliable than traditional techniques, and is able to make clear identification
of periodic behavior when traditional techniques do not. This technique is
based on an information theoretic reduction of linear (autoregressive) models
so that only the essential features of an autoregressive model are retained.
These models we call reduced autoregressive models (RARM). The essential
features of reduced autoregressive models include any periodicity present in
the data. We provide theoretical and numerical evidence from both experimental
and artificial data, to demonstrate that this technique will reliably detect
periodicities if and only if they are present in the data. There are strong
information theoretic arguments to support the statement that RARM detects
periodicities if they are present. Surrogate data techniques are used to ensure
the converse. Furthermore, our calculations demonstrate that RARM is more
robust, more accurate, and more sensitive, than traditional spectral
techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified
styl
Time transfer between the Goddard Optical Research Facility and the U.S. Naval Observatory using 100 picosecond laser pulses
A horizontal two-way time comparison link in air between the University of Maryland laser ranging and time transfer equipment at the Goddard Optical Research Facility (GORF) 1.2 m telescope and the Time Services Division of the U.S. Naval Observatory (USNO) was established. Flat mirrors of 25 cm and 30 cm diameter respectively were placed on top of the Washington Cathedral and on a water tower at the Beltsville Agricultural Research Center. Two optical corner reflectors at the USNO reflect the laser pulses back to the GORF. Light pulses of 100 ps duration and an energy of several hundred microjoules are sent at the rate of 10 pulses per second. The detection at the USNO is by means of an RCA C30902E avalanche photodiode and the timing is accomplished by an HP 5370A computing counter and an HP 1000 computer with respect to a 10 pps pulse train from the Master Clock
Multi-Player Diffusion Games on Graph Classes
We study competitive diffusion games on graphs introduced by Alon et al. [1]
to model the spread of influence in social networks. Extending results of
Roshanbin [8] for two players, we investigate the existence of pure Nash
equilibria for at least three players on different classes of graphs including
paths, cycles, grid graphs and hypercubes; as a main contribution, we answer an
open question proving that there is no Nash equilibrium for three players on (m
x n) grids with min(m, n) >= 5. Further, extending results of Etesami and Basar
[3] for two players, we prove the existence of pure Nash equilibria for four
players on every d-dimensional hypercube.Comment: Extended version of the TAMC 2015 conference version now discussing
hypercube results (added details for the proof of Proposition 1
Recommended from our members
A Dose Relationship Between Brain Functional Connectivity and Cumulative Head Impact Exposure in Collegiate Water Polo Players.
A growing body of evidence suggests that chronic, sport-related head impact exposure can impair brain functional integration and brain structure and function. Evidence of a robust inverse relationship between the frequency and magnitude of repeated head impacts and disturbed brain network function is needed to strengthen an argument for causality. In pursuing such a relationship, we used cap-worn inertial sensors to measure the frequency and magnitude of head impacts sustained by eighteen intercollegiate water polo athletes monitored over a single season of play. Participants were evaluated before and after the season using computerized cognitive tests of inhibitory control and resting electroencephalography. Greater head impact exposure was associated with increased phase synchrony [r (16) > 0.626, p < 0.03 corrected], global efficiency [r (16) > 0.601, p < 0.04 corrected], and mean clustering coefficient [r (16) > 0.625, p < 0.03 corrected] in the functional networks formed by slow-wave (delta, theta) oscillations. Head impact exposure was not associated with changes in performance on the inhibitory control tasks. However, those with the greatest impact exposure showed an association between changes in resting-state connectivity and a dissociation between performance on the tasks after the season [r (16) = 0.481, p = 0.043] that could also be attributed to increased slow-wave synchrony [F (4, 135) = 113.546, p < 0.001]. Collectively, our results suggest that athletes sustaining the greatest head impact exposure exhibited changes in whole-brain functional connectivity that were associated with altered information processing and inhibitory control
Optimal MRI sequences for 68Ga-PSMA-11 PET/MRI in evaluation of biochemically recurrent prostate cancer.
BackgroundPET/MRI can be used for the detection of disease in biochemical recurrence (BCR) patients imaged with 68Ga-PSMA-11 PET. This study was designed to determine the optimal MRI sequences to localize positive findings on 68Ga-PSMA-11 PET of patients with BCR after definitive therapy. Fifty-five consecutive prostate cancer patients with BCR imaged with 68Ga-PSMA-11 3.0T PET/MRI were retrospectively analyzed. Mean PSA was 7.9 ± 12.9 ng/ml, and mean PSA doubling time was 7.1 ± 6.6 months. Detection rates of anatomic correlates for prostate-specific membrane antigen (PSMA)-positive foci were evaluated on small field of view (FOV) T2, T1 post-contrast, and diffusion-weighted images. For prostate bed recurrences, the detection rate of dynamic contrast-enhanced (DCE) imaging for PSMA-positive foci was evaluated. Finally, the detection sensitivity for PSMA-avid foci on 3- and 8-min PET acquisitions was compared.ResultsPSMA-positive foci were detected in 89.1% (49/55) of patients evaluated. Small FOV T2 performed best for lymph nodes and detected correlates for all PSMA-avid lymph nodes. DCE imaging performed the best for suspected prostate bed recurrence, detecting correlates for 87.5% (14/16) of PSMA-positive prostate bed foci. The 8-min PET acquisition performed better than the 3-min acquisition for lymph nodes smaller than 1 cm, detecting 100% (57/57) of lymph nodes less than 1 cm, compared to 78.9% (45/57) for the 3-min acquisition.ConclusionPSMA PET/MRI performed well for the detection of sites of suspected recurrent disease in patients with BCR. Of the MRI sequences obtained for localization, small FOV T2 images detected the greatest proportion of PSMA-positive abdominopelvic lymph nodes and DCE imaging detected the greatest proportion of PSMA-positive prostate bed foci. The 8-min PET acquisition was superior to the 3 min acquisition for detection of small lymph nodes
Long-term balancing selection at the Phosphorus Starvation Tolerance 1 (PSTOL1) locus in wild, domesticated and weedy rice (Oryza)
Dry Shoot Weights of PSTOL1 genotypes grown in low and high phosphorus conditions. Plants were measured after 21Â days in high phosphorus (black) and low phosphorus (grey) media. (PDF 72 kb
Quasar Luminosity Functions from Joint Evolution of Black Holes and Host Galaxies
We show that our previously proposed anti-hierarchical baryon collapse
scenario for the joint evolution of black holes and host galaxies predicts
quasar luminosity functions at redshifts 1.5<z<6 and local properties in nice
agreement with observations. In our model the quasar activity marks and
originates the transition between an earlier phase of violent and heavily
dust-enshrouded starburst activity promoting rapid black hole growth, and a
later phase of almost passive evolution; the former is traced by the
submillimeter-selected sources, while the latter accounts for the high number
density of massive galaxies at substantial redshifts z>1.5, the population of
Extremely Red Objects, and the properties of local ellipticals.Comment: 15 pages, 8 figures, uses REVTeX 4 + emulateapj.cls and apjfonts.sty.
Version revised following referee's comments. Accepted on Ap
Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait
Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system
- …
