3,160 research outputs found
Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films
We report the discovery of mesoscale regions with distinctive magnetic
properties in epitaxial LaSrMnO films which exhibit
tunneling-like magnetoresistance across grain boundaries. By using
temperature-dependent magnetic force microscopy we observe that the mesoscale
regions are formed near the grain boundaries and have a different Curie
temperature (up to 20 K {\it higher}) than the grain interiors. Our images
provide direct evidence for previous speculations that the grain boundaries in
thin films are not magnetically and electronically sharp interfaces. The size
of the mesoscale regions varies with temperature and nature of the underlying
defect.Comment: 4 pages of text, 4 figure
High-Field Electrical Transport in Single-Wall Carbon Nanotubes
Using low-resistance electrical contacts, we have measured the intrinsic
high-field transport properties of metallic single-wall carbon nanotubes.
Individual nanotubes appear to be able to carry currents with a density
exceeding 10^9 A/cm^2. As the bias voltage is increased, the conductance drops
dramatically due to scattering of electrons. We show that the current-voltage
characteristics can be explained by considering optical or zone-boundary phonon
emission as the dominant scattering mechanism at high field.Comment: 4 pages, 3 eps figure
Disorder, pseudospins, and backscattering in carbon nanotubes
We address the effects of disorder on the conducting properties of metal and
semiconducting carbon nanotubes. Experimentally, the mean free path is found to
be much larger in metallic tubes than in doped semiconducting tubes. We show
that this result can be understood theoretically if the disorder potential is
long-ranged. The effects of a pseudospin index that describes the internal
sublattice structure of the states lead to a suppression of scattering in
metallic tubes, but not in semiconducting tubes. This conclusion is supported
by tight-binding calculations.Comment: four page
Topological dilaton black holes
In four-dimensional spacetime, when the two-sphere of black hole event
horizons is replaced by a two-dimensional hypersurface with zero or negative
constant curvature, the black hole is referred to as a topological black hole.
In this paper we present some exact topological black hole solutions in the
Einstein-Maxwell-dilaton theory with a Liouville-type dilaton potential.Comment: 8 pages, Revtex, no figure
Dosimetric comparison of peripheral NSCLC SBRT using Acuros XB and AAA calculation algorithms.
There is a concern for dose calculation in highly heterogenous environments such as the thorax region. This study compares the quality of treatment plans of peripheral non-small cell lung cancer (NSCLC) stereotactic body radiation therapy (SBRT) using 2 calculation algorithms, namely, Eclipse Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB), for 3-dimensional conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT). Four-dimensional computed tomography (4DCT) data from 20 anonymized patients were studied using Varian Eclipse planning system, AXB, and AAA version 10.0.28. A 3DCRT plan and a VMAT plan were generated using AAA and AXB with constant plan parameters for each patient. The prescription and dose constraints were benchmarked against Radiation Therapy Oncology Group (RTOG) 0915 protocol. Planning parameters of the plan were compared statistically using Mann-Whitney U tests. Results showed that 3DCRT and VMAT plans have a lower target coverage up to 8% when calculated using AXB as compared with AAA. The conformity index (CI) for AXB plans was 4.7% lower than AAA plans, but was closer to unity, which indicated better target conformity. AXB produced plans with global maximum doses which were, on average, 2% hotter than AAA plans. Both 3DCRT and VMAT plans were able to achieve D95%. VMAT plans were shown to be more conformal (CI = 1.01) and were at least 3.2% and 1.5% lower in terms of PTV maximum and mean dose, respectively. There was no statistically significant difference for doses received by organs at risk (OARs) regardless of calculation algorithms and treatment techniques. In general, the difference in tissue modeling for AXB and AAA algorithm is responsible for the dose distribution between the AXB and the AAA algorithms. The AXB VMAT plans could be used to benefit patients receiving peripheral NSCLC SBRT. [Abstract copyright: Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Mechanical tuning of the evaporation rate of liquid on crossed fibers
We investigate experimentally the drying of a small volume of perfectly
wetting liquid on two crossed fibers. We characterize the drying dynamics for
the three liquid morphologies that are encountered in this geometry: drop,
column and a mixed morphology, in which a drop and a column coexist. For each
morphology, we rationalize our findings with theoretical models that capture
the drying kinetics. We find that the evaporation rate depends significantly on
the liquid morphology and that the drying of liquid column is faster than the
evaporation of the drop and the mixed morphology for a given liquid volume.
Finally, we illustrate that shearing a network of fibers reduces the angle
between them, changes the morphology towards the column state, and so enhances
the drying rate of a volatile liquid deposited on it
Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes
The electronic properties of carbon nanotubes are investigated in the
presence of disorder and a magnetic field parallel or perpendicular to the
nanotube axis. In the parallel field geometry, the -periodic
metal-insulator transition (MIT) induced in metallic or semiconducting
nanotubes is shown to be related to a chirality-dependent shifting of the
energy of the van Hove singularities (VHSs). The effect of disorder on this
magnetic field-related mechanism is considered with a discussion of mean free
paths, localization lengths and magnetic dephasing rate in the context of
recent experiments.Comment: 22 pages, 6 Postscript figures. submitted to Phys. Rev.
Realizations of Real Low-Dimensional Lie Algebras
Using a new powerful technique based on the notion of megaideal, we construct
a complete set of inequivalent realizations of real Lie algebras of dimension
no greater than four in vector fields on a space of an arbitrary (finite)
number of variables. Our classification amends and essentially generalizes
earlier works on the subject.
Known results on classification of low-dimensional real Lie algebras, their
automorphisms, differentiations, ideals, subalgebras and realizations are
reviewed.Comment: LaTeX2e, 39 pages. Essentially exetended version. Misprints in
Appendix are correcte
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
