129,992 research outputs found

    Entanglement and spin squeezing properties for three bosons in two modes

    Full text link
    We discuss the canonical form for a pure state of three identical bosons in two modes, and classify its entanglement correlation into two types, the analogous GHZ and the W types as well known in a system of three distinguishable qubits. We have performed a detailed study of two important entanglement measures for such a system, the concurrence C\mathcal{C} and the triple entanglement measure τ\tau. We have also calculated explicitly the spin squeezing parameter ξ\xi and the result shows that the W state is the most ``anti-squeezing'' state, for which the spin squeezing parameter cannot be regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P

    First-principles study of native point defects in Bi2Se3

    Full text link
    Using first-principles method within the framework of the density functional theory, we study the influence of native point defect on the structural and electronic properties of Bi2_2Se3_3. Se vacancy in Bi2_2Se3_3 is a double donor, and Bi vacancy is a triple acceptor. Se antisite (SeBi_{Bi}) is always an active donor in the system because its donor level (ε\varepsilon(+1/0)) enters into the conduction band. Interestingly, Bi antisite(BiSe1_{Se1}) in Bi2_2Se3_3 is an amphoteric dopant, acting as a donor when μ\mue_e<<0.119eV (the material is typical p-type) and as an acceptor when μ\mue_e>>0.251eV (the material is typical n-type). The formation energies under different growth environments (such as Bi-rich or Se-rich) indicate that under Se-rich condition, SeBi_{Bi} is the most stable native defect independent of electron chemical potential μ\mue_e. Under Bi-rich condition, Se vacancy is the most stable native defect except for under the growth window as μ\mue_e>>0.262eV (the material is typical n-type) and Δ\Deltaμ\muSe_{Se}<<-0.459eV(Bi-rich), under such growth windows one negative charged BiSe1_{Se1} is the most stable one.Comment: 7 pages, 4 figure

    Manipulating Memory Associations Changes Decision-making Preferences in a Preconditioning Task

    Get PDF
    Memories of past experiences can guide our decisions. Thus, if memories are undermined or distorted, decision making should be affected. Nevertheless, little empirical research has been done to examine the role of memory in reinforcement decision-making . We hypothesized that if memories guide choices in a conditioning decision-making task, then manipulating these memories would result in a change of decision preferences to gain reward. We manipulated participants’ memories by providing false feedback that their memory associations were wrong before they made decisions that could lead them to win money . Participants’ memory ratings decreased significantly after receiving false feedback. More importantly, we found that false feedback led participants’ decision bias to disappear after their memory associations were undermined . Our results suggest that reinforcement decision-making can be altered by fasle feedback on memories . The results are discussed using memory mechanisms such as spreading activation theories

    Sensitivity of neutron to proton ratio toward the high density behavior of symmetry energy in heavy-ion collisions

    Full text link
    The symmetry energy at sub and supra-saturation densities has a great importance in understanding the exact nature of asymmetric nuclear matter as well as neutron star, but, it is poor known, especially at supra-saturation densities. We will demonstrate here that the neutron to proton ratios from different kind of fragments is able to determine the supra-saturation behavior of symmetry energy or not. For this purpose, a series of Sn isotopes are simulated at different incident energies using the Isospin Quantum Molecular Dynamics (IQMD) model with either a soft or a stiff symmetry energy for the present study. It is found that the single neutron to proton ratio from free nucleons as well as LCP's is sensitive towards the symmetry energy, incident energy as well as isospin asymmetry of the system. However, with the double neutron to proton ratio, it is true only for the free nucleons. It is possible to study the high density behavior of symmetry energy by using the neutron to proton ratio from free nucleons.Comment: 11 Pages, 9 Figure

    Vector magnetic field sensing by single nitrogen vacancy center in diamond

    Full text link
    In this Letter, we proposed and experimentally demonstrated a method to detect vector magnetic field with a single nitrogen vacancy (NV) center in diamond. The magnetic field in parallel with the axis of the NV center can be obtained by detecting the electron Zeeman shift, while the Larmor precession of an ancillary nuclear spin close to the NV center can be used to measure the field perpendicular to the axis. Experimentally, both the Zeeman shift and Larmor precession can be measured through the fluorescence from the NV center. By applying additional calibrated magnetic fields, complete information of the vector magnetic field can be achieved with such a method. This vector magnetic field detection method is insensitive to temperature fluctuation and it can be applied to nanoscale magnetic measurement.Comment: 5 pages, 5 figure
    corecore