19,911 research outputs found
Axial light emission and Ar metastable densities in a parallel plate dc micro discharge in steady state and transient regimes
Axial emission profiles in a parallel plate dc micro discharge (feedgas:
argon; discharge gap d=1mm; pressure p=10Torr) were studied by means of time
resolved imaging with a fast ICCD camera. Additionally, volt-ampere (V-A)
characteristics were recorded and Ar* metastable densities were measured by
tunable diode laser absorption spectroscopy (TDLAS). Axial emission profiles in
the steady state regime are similar to corresponding profiles in standard size
discharges (d=1cm, p=1Torr). For some discharge conditions relaxation
oscillations are present when the micro discharge switches periodically between
low current Townsend-like mode and normal glow. At the same time the axial
emission profile shows transient behavior, starting with peak distribution at
the anode, which gradually moves towards the cathode during the normal glow.
The development of argon metastable densities highly correlates with the
oscillating discharge current. Gas temperatures in the low current
Townsend-like mode (T= 320-400K) and the high current glow mode (T=469-526K)
were determined by the broadening of the recorded spectral profiles as a
function of the discharge current.Comment: submitted to Plasma Sources Sci. Techno
High-Temperature Transport Properties of Yb4−xSmxSb3
Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K
Sub-Sets of Cancer Stem Cells Differ Intrinsically in Their Patterns of Oxygen Metabolism
PMCID: PMC3640080This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Extensive degeneracy, Coulomb phase and magnetic monopoles in an artificial realization of the square ice model
Artificial spin ice systems have been introduced as a possible mean to
investigate frustration effects in a well-controlled manner by fabricating
lithographically-patterned two-dimensional arrangements of interacting magnetic
nanostructures. This approach offers the opportunity to visualize
unconventional states of matter, directly in real space, and triggered a wealth
of studies at the frontier between nanomagnetism, statistical thermodynamics
and condensed matter physics. Despite the strong efforts made these last ten
years to provide an artificial realization of the celebrated square ice model,
no simple geometry based on arrays of nanomagnets succeeded to capture the
macroscopically degenerate ground state manifold of the corresponding model.
Instead, in all works reported so far, square lattices of nanomagnets are
characterized by a magnetically ordered ground state consisting of local
flux-closure configurations with alternating chirality. Here, we show
experimentally and theoretically, that all the characteristics of the square
ice model can be observed if the artificial square lattice is properly
designed. The spin configurations we image after demagnetizing our arrays
reveal unambiguous signatures of an algebraic spin liquid state characterized
by the presence of pinch points in the associated magnetic structure factor.
Local excitations, i.e. classical analogues of magnetic monopoles, are found to
be free to evolve in a massively degenerated, divergence-free vacuum. We thus
provide the first lab-on-chip platform allowing the investigation of collective
phenomena, including Coulomb phases and ice-like physics.Comment: 26 pages, 10 figure
Common variants of the TCF7L2 gene are associated with increased risk of type 2 diabetes mellitus in a UK-resident South Asian population
Background
Recent studies have implicated variants of the transcription factor 7-like 2 (TCF7L2) gene in genetic susceptibility to type 2 diabetes mellitus in several different populations. The aim of this study was to determine whether variants of this gene are also risk factors for type 2 diabetes development in a UK-resident South Asian cohort of Punjabi ancestry.
Methods
We genotyped four single nucleotide polymorphisms (SNPs) of TCF7L2 (rs7901695, rs7903146, rs11196205 and rs12255372) in 831 subjects with diabetes and 437 control subjects.
Results
The minor allele of each variant was significantly associated with type 2 diabetes; the greatest risk of developing the disease was conferred by rs7903146, with an allelic odds ratio (OR) of 1.31 (95% CI: 1.11 – 1.56, p = 1.96 × 10-3). For each variant, disease risk associated with homozygosity for the minor allele was greater than that for heterozygotes, with the exception of rs12255372. To determine the effect on the observed associations of including young control subjects in our data set, we reanalysed the data using subsets of the control group defined by different minimum age thresholds. Increasing the minimum age of our control subjects resulted in a corresponding increase in OR for all variants of the gene (p ≤ 1.04 × 10-7).
Conclusion
Our results support recent findings that TCF7L2 is an important genetic risk factor for the development of type 2 diabetes in multiple ethnic groups
Composition, structure and stability of RuO_2(110) as a function of oxygen pressure
Using density-functional theory (DFT) we calculate the Gibbs free energy to
determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic
equilibrium with an oxygen-rich environment. The traditionally assumed
stoichiometric termination is only found to be favorable at low oxygen chemical
potentials, i.e. low pressures and/or high temperatures. At realistic O
pressure, the surface is predicted to contain additional terminal O atoms.
Although this O excess defines a so-called polar surface, we show that the
prevalent ionic model, that dismisses such terminations on electrostatic
grounds, is of little validity for RuO_2(110). Together with analogous results
obtained previously at the (0001) surface of corundum-structured oxides, these
findings on (110) rutile indicate that the stability of non-stoichiometric
terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Reduction of seafood processing wastewater using technologies enhanced by swim–bed technology
The increasing growth of the seafood processing industries considerably requires more industrial process activities and water consumption. It is estimated that approximately 10–40 m3 of wastewater is generated from those industries for processing one-tonne of raw materials. Due to limitations and regulations in natural resources utilization, a suitable and systematic wastewater treatment plant is very important to meet rigorous discharge standards. As a result of food waste biodegradability, the biological treatment and some extent of swim-bed technology, including a novel acryl-fibre (biofilm) material might be used effectively to meet the effluent discharge criteria. This chapter aims to develop understanding on current problems and production of the seafood wastewater regarding treatment efficiency and methods of treatment
Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells
published_or_final_versio
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells
Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization
- …
