70,181 research outputs found

    Cosmic Microwave Background constraints of decaying dark matter particle properties

    Full text link
    If a component of cosmological dark matter is made up of massive particles - such as sterile neutrinos - that decay with cosmological lifetime to emit photons, the reionization history of the universe would be affected, and cosmic microwave background anisotropies can be used to constrain such a decaying particle model of dark matter. The optical depth depends rather sensitively on the decaying dark matter particle mass m_{dm}, lifetime tau_{dm}, and the mass fraction of cold dark matter f that they account for in this model. Assuming that there are no other sources of reionization and using the WMAP 7-year data, we find that 250 eV < m_{dm} < 1 MeV, whereas 2.23*10^3 yr < tau_{dm} < 1.23*10^18 yr. The best fit values for m_{dm} and tau_{dm}/f are 17.3 keV and 2.03*10^16 yr respectively.Comment: 17 pages, 3 figure

    A binary signature in the non-thermal radio-emitter Cyg OB2 #9

    Full text link
    Aims: Non-thermal radio emission associated with massive stars is believed to arise from a wind-wind collision in a binary system. However, the evidence of binarity is still lacking in some cases, notably Cyg OB2 #9 Methods: For several years, we have been monitoring this heavily-reddened star from various observatories. This campaign allowed us to probe variations both on short and long timescales and constitutes the first in-depth study of the visible spectrum of this object. Results: Our observations provide the very first direct evidence of a companion in Cyg OB2 #9, confirming the theoretical wind-wind collision scenario. These data suggest a highly eccentric orbit with a period of a few years, compatible with the 2yr-timescale measured in the radio range. In addition, the signature of the wind-wind collision is very likely reflected in the behaviour of some emission lines.Comment: accepted by A&A, 4 p, 3figure

    Probing electron-electron interaction in quantum Hall systems with scanning tunneling spectroscopy

    Full text link
    Using low-temperature scanning tunneling spectroscopy applied to the Cs-induced two-dimensional electron system (2DES) on p-type InSb(110), we probe electron-electron interaction effects in the quantum Hall regime. The 2DES is decoupled from p-doped bulk states and exhibits spreading resistance within the insulating quantum Hall phases. In quantitative agreement with calculations we find an exchange enhancement of the spin splitting. Moreover, we observe that both the spatially averaged as well as the local density of states feature a characteristic Coulomb gap at the Fermi level. These results show that electron-electron interaction effects can be probed down to a resolution below all relevant length scales.Comment: supplementary movie in ancillary file

    Search for magnetic fields in particle-accelerating colliding-wind binaries

    Full text link
    Some colliding-wind massive binaries, called particle-accelerating colliding-wind binaries (PACWB), exhibit synchrotron radio emission, which is assumed to be generated by a stellar magnetic field. However, no measurement of magnetic fields in these stars has ever been performed. We aim at quantifying the possible stellar magnetic fields present in PACWB to provide constraints for models. We gathered 21 high-resolution spectropolarimetric observations of 9 PACWB available in the ESPaDOnS, Narval and HarpsPol archives. We analysed these observations with the Least Squares Deconvolution method. We separated the binary spectral components when possible. No magnetic signature is detected in any of the 9 PACWB stars and all longitudinal field measurements are compatible with 0 G. We derived the upper field strength of a possible field that could have remained hidden in the noise of the data. While the data are not very constraining for some stars, for several stars we could derive an upper limit of the polar field strength of the order of 200 G. We can therefore exclude the presence of strong or moderate stellar magnetic fields in PACWB, typical of the ones present in magnetic massive stars. Weak magnetic fields could however be present in these objects. These observational results provide the first quantitative constraints for future models of PACWB.Comment: Accepted in A&

    A Note on Flux Induced Superpotentials in String Theory

    Get PDF
    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction.Comment: 19 pages, no figure

    The Deep Lens Survey Transient Search I : Short Timescale and Astrometric Variability

    Full text link
    We report on the methodology and first results from the Deep Lens Survey transient search. We utilize image subtraction on survey data to yield all sources of optical variability down to 24th magnitude. Images are analyzed immediately after acquisition, at the telescope and in near-real time, to allow for followup in the case of time-critical events. All classes of transients are posted to the web upon detection. Our observing strategy allows sensitivity to variability over several decades in timescale. The DLS is the first survey to classify and report all types of photometric and astrometric variability detected, including solar system objects, variable stars, supernovae, and short timescale phenomena. Three unusual optical transient events were detected, flaring on thousand-second timescales. All three events were seen in the B passband, suggesting blue color indices for the phenomena. One event (OT 20020115) is determined to be from a flaring Galactic dwarf star of spectral type dM4. From the remaining two events, we find an overall rate of \eta = 1.4 events deg-2 day-1 on thousand-second timescales, with a 95% confidence limit of \eta < 4.3. One of these events (OT 20010326) originated from a compact precursor in the field of galaxy cluster Abell 1836, and its nature is uncertain. For the second (OT 20030305) we find strong evidence for an extended extragalactic host. A dearth of such events in the R passband yields an upper 95% confidence limit on short timescale astronomical variability between 19.5 < R < 23.4 of \eta_R < 5.2. We report also on our ensemble of astrometrically variable objects, as well as an example of photometric variability with an undetected precursor.Comment: 24 pages, 12 figures, 3 tables. Accepted for publication in ApJ. Variability data available at http://dls.bell-labs.com/transients.htm

    Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection

    Get PDF
    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects rotating Rayleigh-B\'enard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly-stationary nearly-radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency fϵμf\sim\epsilon^\mu with μ1\mu\simeq1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, μ\mu and the domain size closely agreed with experiment.Comment: 8 pages, 11 figure
    corecore