33,872 research outputs found

    Behavior of the sonic boom shock wave near the sonic cutoff altitude

    Get PDF
    Behavior of sonic boom shock wave near sonic cutoff altitud

    Study of structure and lattice dynamics of the Sr2_2CuO2_2Cl2_2(001) surface by helium-atom scattering

    Full text link
    Structure and lattice dynamics of the (001) surface of Sr2_2CuO2_2Cl2_2 have been studied by helium atom scattering (HAS). Analysis of diffraction patterns obtained by elastic HAS revealed a surface periodicity consistent with bulk termination, and confirms that the surface is non-polar and stable which favors a SrCl surface termination. Bulk and surface lattice dynamical calculations based on the shell-model were carried out to characterize the experimental phonon dispersions obtained by inelastic HAS. No experimental surface mode was observed above 200 cm1^{-1}. Comparison between the experimental data and theoretical results for two different slabs with SrCl and CuO2_2 terminations showed that the experimental data conforms exclusively with the SrCl surface modes.Comment: 10 pages, 11 figure

    Finite-size effect of antiferromagnetic transition and electronic structure in LiFePO4

    Full text link
    The finite-size effect on the antiferromagnetic (AF) transition and electronic configuration of iron has been observed in LiFePO4. Determination of the scaling behavior of the AF transition temperature (TN) versus the particle-size dimension (L) in the critical regime 1-TN(L)/TN(XTL)\simL^-1 reveals that the activation nature of the AF ordering strongly depends on the surface energy. In addition, the effective magnetic moment that reflects the electronic configuration of iron in LiFePO4 is found to be sensitive to the particle size. An alternative structural view based on the polyatomic ion groups of (PO4)3- is proposed.Comment: To be published in Phys. Rev. B - Rapid Communicatio

    Interaction of Phonons and Dirac Fermions on the Surface of Bi2Se3: A Strong Kohn Anomaly

    Full text link
    We report the first measurements of phonon dispersion curves on the (001) surface of the strong three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent signature of the exotic metallic Dirac fermion quasi-particles, including a strong Kohn anomaly. The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a frequency maximum of 1.8 THz, and having a V-shaped minimum at approximately 2kF that defines the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions to this renormalization is derived in terms of a Coulomb-type perturbation model

    Unanticipated differences between α- and γ-diaminobutyric acid-linked hairpin polyamide-alkylator conjugates

    Get PDF
    Hairpin polyamide–chlorambucil conjugates containing an {alpha}-diaminobutyric acid ({alpha}-DABA) turn moiety are compared to their constitutional isomers containing the well-characterized {gamma}-DABA turn. Although the DNA-binding properties of unconjugated polyamides are similar, the {alpha}-DABA conjugates display increased alkylation specificity and decreased rate of reaction. Treatment of a human colon carcinoma cell line with {alpha}-DABA versus {gamma}-DABA hairpin conjugates shows only slight differences in toxicities while producing similar effects on cell morphology and G2/M stage cell cycle arrest. However, striking differences in animal toxicity between the two classes are observed. Although mice treated with an {alpha}-DABA hairpin polyamide do not differ significantly from control mice, the analogous {gamma}-DABA hairpin is lethal. This dramatic difference from a subtle structural change would not have been predicted

    Preparation of Dicke States in an Ion Chain

    Full text link
    We have investigated theoretically and experimentally a method for preparing Dicke states in trapped atomic ions. We consider a linear chain of NN ion qubits that is prepared in a particular Fock state of motion, m>|m>. The mm phonons are removed by applying a laser pulse globally to the NN qubits, and converting the motional excitation to mm flipped spins. The global nature of this pulse ensures that the mm flipped spins are shared by all the target ions in a state that is a close approximation to the Dicke state \D{N}{m}. We calculate numerically the fidelity limits of the protocol and find small deviations from the ideal state for m=1m = 1 and m=2m = 2. We have demonstrated the basic features of this protocol by preparing the state \D{2}{1} in two 25^{25}Mg+^+ target ions trapped simultaneously with an 27^{27}Al+^+ ancillary ion.Comment: 5 pages, 2 figure

    Magnetic susceptibility study of hydrated and non-hydrated NaxCoO2-yH2O single crystals

    Full text link
    We have measured the magnetic susceptibility of single crystal samples of non-hydrated NaxCoO2 (x ~ 0.75, 0.67, 0.5, and 0.3) and hydrated Na0.3CoO2-yH2O (y ~ 0, 0.6, 1.3). Our measurements reveal considerable anisotropy between the susceptibilities with H||c and H||ab. The derived anisotropic g-factor ratio (g_ab/g_c) decreases significantly as the composition is changed from the Curie-Weiss metal with x = 0.75 to the paramagnetic metal with x = 0.3. Fully hydrated Na0.3CoO2-1.3H2O samples have a larger susceptibility than non-hydrated Na0.3CoO2 samples, as well as a higher degree of anisotropy. In addition, the fully hydrated compound contains a small additional fraction of anisotropic localized spins.Comment: 6 pages, 5 figure

    Spin liquid behaviour in Jeff=1/2 triangular lattice Ba3IrTi2O9

    Full text link
    Ba3IrTi2O9 crystallizes in a hexagonal structure consisting of a layered triangular arrangement of Ir4+ (Jeff=1/2). Magnetic susceptibility and heat capacity data show no magnetic ordering down to 0.35K inspite of a strong magnetic coupling as evidenced by a large Curie-Weiss temperature=-130K. The magnetic heat capacity follows a power law at low temperature. Our measurements suggest that Ba3IrTi2O9 is a 5d, Ir-based (Jeff=1/2), quantum spin liquid on a 2D triangular lattice.Comment: 10 pages including supplemental material, to be published in Phys. Rev. B (Rapid Comm.
    corecore