178 research outputs found
Reply to "Comment on 'Universal Behavior of Load Distribution in Scale-Free Networks'"
Reply to "Comment on 'Universal Behavior of Load Distribution in Scale-Free
Networks.'"Comment: 1 page, 1 figur
Two-Component Genetic Switch as a Synthetic Module with Tunable Stability
Despite stochastic fluctuations, some genetic switches are able to retain their expression states through multiple cell divisions, providing epigenetic memory. We propose a novel rationale for tuning the functional stability of a simple synthetic gene switch through protein dimerization. Introducing an approximation scheme to access long-time stochastic dynamics of multiple-component gene circuits, we find that the spontaneous switching rate may exhibit greater than 8orders of magnitude variation. The manipulation of the circuit's biochemical properties offers a practical strategy for designing robust epigenetic memory with synthetic circuits.open101
An investigation into seasonal and regional aerosol characteristics in East Asia using model-predicted and remotely-sensed aerosol properties
International audienceIn this study, the spatio-temporal and seasonal distributions of EOS/Terra Moderate Resolution Imaging Spectroradiometer (MODIS)-derived aerosol optical depth (AOD) over East Asia were analyzed in conjunction with US EPA Models-3/CMAQ v4.3 modeling. In this study, two MODIS AOD products (? MODIS:?M-BAER and ?NASA) retrieved through a modified Bremen Aerosol Retrieval (M-BAER) algorithm and NASA collection 5 (C005) algorithm were compared with the AOD (?CMAQ) that was calculated from the US EPA Models-3/CMAQ model simulations. In general, the CMAQ-predicted AOD values captured the spatial and temporal variations of the two MODIS AOD products over East Asia reasonable well. Since ?MODIS cannot provide information on the aerosol chemical composition in the atmosphere, different aerosol formation characteristics in different regions and different seasons in East Asia cannot be described or identified by ?MODIS itself. Therefore, the seasonally and regionally varying aerosol formation and distribution characteristics were investigated by the US EPA Models-3/CMAQ v4.3 model simulations. The contribution of each particulate chemical species to ?M-BAER, ?NASA, and ?CMAQ showed strong spatial, temporal and seasonal variations. For example, during the summer episode, ?M-BAER, ?NASA, and ?CMAQ were mainly raised due to high concentrations of (NH4)2SO4 over Chinese urban and industrial centers and secondary organic aerosols (SOAs) over the southern parts of China, whereas during the winter episode, ?M-BAER, ?NASA, and ?CMAQ were higher due largely to high levels of NH3NO3 formed over the urban and industrial centers, as well as in areas with high NH3 emissions. In addition, the accuracy of ?M-BAER and ?NASA was evaluated by a comparison with the AOD (?AERONET) from the AERONET sites in East Asia. Both ?M-BAER and ?NASA showed a strong correlation with ?AERONETR around the 1:1 line (R=0.79), indicating promising potential for the application of both the M-BAER and NASA aerosol retrieval algorithms to satellite-based air quality monitoring studies in East Asia
Genetic noise control via protein oligomerization
Gene expression in a cell entails random reaction events occurring over
disparate time scales. Thus, molecular noise that often results in phenotypic
and population-dynamic consequences sets a fundamental limit to biochemical
signaling. While there have been numerous studies correlating the architecture
of cellular reaction networks with noise tolerance, only a limited effort has
been made to understand the dynamic role of protein-protein interactions. Here
we have developed a fully stochastic model for the positive feedback control of
a single gene, as well as a pair of genes (toggle switch), integrating
quantitative results from previous in vivo and in vitro studies. We find that
the overall noise-level is reduced and the frequency content of the noise is
dramatically shifted to the physiologically irrelevant high-frequency regime in
the presence of protein dimerization. This is independent of the choice of
monomer or dimer as transcription factor and persists throughout the multiple
model topologies considered. For the toggle switch, we additionally find that
the presence of a protein dimer, either homodimer or heterodimer, may
significantly reduce its random switching rate. Hence, the dimer promotes the
robust function of bistable switches by preventing the uninduced (induced)
state from randomly being induced (uninduced). The specific binding between
regulatory proteins provides a buffer that may prevent the propagation of
fluctuations in genetic activity. The capacity of the buffer is a non-monotonic
function of association-dissociation rates. Since the protein oligomerization
per se does not require extra protein components to be expressed, it provides a
basis for the rapid control of intrinsic or extrinsic noise
Small anisotropy of the lower critical field and -wave two-gap feature in single crystal LiFeAs
The in- and out-of-plane lower critical fields and magnetic penetration
depths for LiFeAs were examined. The anisotropy ratio is
smaller than the expected theoretical value, and increased slightly with
increasing temperature from 0.6 to . This small degree of anisotropy
was numerically confirmed by considering electron correlation effect. The
temperature dependence of the penetration depths followed a power
law() below 0.3, with 3.5 for both and
. Based on theoretical studies of iron-based superconductors, these
results suggest that the superconductivity of LiFeAs can be represented by an
extended -wave due to weak impurity scattering effect. And the
magnitudes of the two gaps were also evaluted by fitting the superfluid density
for both the in- and out-of-plane to the two-gap model. The estimated values
for the two gaps are consistent with the results of angle resolved
photoemission spectroscopy and specific heat experiments.Comment: 10 pages, 5 figure
- …
