5,156 research outputs found
Full-wave electromagnetic modes and hybridization in nanoparticle dimers
The plasmon hybridization theory is based on a quasi-electrostatic approximation of the Maxwell’s equations. It does not take into account magnetic interactions, retardation effects, and radiation losses. Magnetic interactions play a dominant role in the scattering from dielectric nanoparticles. The retardation effects play a fundamental role in the coupling of the modes with the incident radiation and in determining their radiative strength; their exclusion may lead to erroneous predictions of the excited modes and of the scattered power spectra. Radiation losses may lead to a significant broadening of the scattering resonances. We propose a hybridization theory for non-Hermitian composite systems based on the full-Maxwell equations that, overcoming all the limitations of the plasmon hybridization theory, unlocks the description of dielectric dimers. As an example, we decompose the scattered field from silicon and silver dimers, under different excitation conditions and gap-sizes, in terms of dimer modes, pinpointing the hybridizing isolated-sphere modes behind them
SANEPIC: A Map-Making Method for Timestream Data From Large Arrays
We describe a map-making method which we have developed for the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST) experiment, but which should
have general application to data from other submillimeter arrays. Our method
uses a Maximum Likelihood based approach, with several approximations, which
allows images to be constructed using large amounts of data with fairly modest
computer memory and processing requirements. This new approach, Signal And
Noise Estimation Procedure Including Correlations (SANEPIC), builds upon
several previous methods, but focuses specifically on the regime where there is
a large number of detectors sampling the same map of the sky, and explicitly
allowing for the the possibility of strong correlations between the detector
timestreams. We provide real and simulated examples of how well this method
performs compared with more simplistic map-makers based on filtering. We
discuss two separate implementations of SANEPIC: a brute-force approach, in
which the inverse pixel-pixel covariance matrix is computed; and an iterative
approach, which is much more efficient for large maps. SANEPIC has been
successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related
results available at http://blastexperiment.info/ [the BLAST Webpage
Sedimentary Iron Cycling and the Origin and Preservation of Magnetization in Platform Carbonate Muds, Andros Island, Bahamas
Carbonate muds deposited on continental shelves are abundant and well-preserved throughout the geologic record because shelf strata are difficult to subduct and peritidal carbonate units often form thick, rheologically strong units that resist penetrative deformation. Much of what we know about pre-Mesozoic ocean chemistry, carbon cycling, and global change is derived from isotope and trace element geochemistry of platform carbonates. Paleomagnetic data from the same sediments would be invaluable, placing records of paleolatitude, paleogeography, and perturbations to the geomagnetic field in the context and relative chronology of chemostratigraphy. To investigate the depositional and early diagenetic processes that contribute to magneitzation in carbonates, we surveyed over 500 core and surface samples of peritidal, often microbially bound carbonate muds spanning the last not, vert, similar 1000 yr and deposited on top of Pleistocene aeolianites in the Triple Goose Creek region of northwest Andros Island, Bahamas. Sedimentological, geochemical, magnetic and ferromagnetic resonance properties divide the sediment columns into three biogeochemical zones. In the upper sediments, the dominant magnetic mineral is magnetite, produced by magnetotactic bacteria and dissimiliatory microbial iron metabolism. At lower depths, above or near mean tide level, microbial iron reduction dissolves most of the magnetic particles in the sediment. In some cores, magnetic iron sulfides precipitate in a bottom zone of sulfate reduction, likely coupled to the oxidation of decaying mangrove roots. The remanent magnetization preserved in all oriented samples appears indistinguishable from the modern local geomagnetic field, which reflects the post-depositional origin of magnetic particles in the lower zone of the parasequence. While we cannot comment on the effects of late-stage diagenesis or metamorphism on remanence in carbonates, we postulate that early-cemented, thin-laminated parasequence tops in ancient peritidal carbonates are mostly likely to preserve syn-depositional paleomagnetic directions and magnetofossil stratigraphies
Modulation of CYP1A1 by PKC Inhibitors and TPA Pre-Treatments in MH1C1 Rat Hepatoma Cells Exposed to 3 -Methylcholanthrene
Cytochrome P4501A1 (CYP1A1), an enzyme known to metabolize polycyclic aromatic hydrocarbons, is regulated by the aryl hydrocarbon receptor (AhR). The involvement of protein kinase C (PKC) in the regulation of AhR signal transduction pathway, has been widely studied but the role of specific PKC isoform(s) involved in this process it is not well clarified. To study which PKC isoform(s) is implicated in the regulation of CYP1A1, in the poorly tumorigenic MH1C1 rat hepatoma cells, we examined the effects of some PKC pharmacological inhibitors, Calphostin C (CAL), Staurosporine (STA) and H7, and of 12-0-tetradecanoyl phorbol 13-acetate (TPA), a PKC activator, on basal and 3- methylcholanthrene (MC)-induced CYP1A1 protein expression and mediated ethoxyresorufin O-deethylation (EROD) activity. In parallel, the activities of PKC-α, -βI, -δ and -ε isoforms, the most expressed in MH1C1 cells, were monitored. After pre-treatment with CAL, STA and H7, the MC-induced CYP1A1 protein and EROD activity were rapidly reduced with temporal profile similar to the profile of the activity of α and β1 PKC isoforms. Moreover, TPA pre-treatment induced a biphasic effect on EROD activity, and a decline of PKC -βI and -α, in first instance, and -δ and -ε activities later on. These findings clearly show that, in MH1C1 cells, PKC is involved in CYP1A1 regulation and that α and βI classic PKC isoforms play an active role in modulating this process
Measuring star formation in high-z massive galaxies: A mid-infrared to submillimeter study of the GOODS NICMOS Survey sample
We present measurements of the mean mid-infrared-to-submillimeter flux
densities of massive (M\ast \approx 2 \times 10^11 Msun) galaxies at redshifts
1.7 < z < 2.9, obtained by stacking positions of known objects taken from the
GOODS NICMOS Survey (GNS) catalog on maps: at 24 {\mu}m (Spitzer/MIPS); 70,
100, and 160{\mu}m (Herschel/PACS); 250, 350, 500{\mu}m (BLAST); and 870{\mu}m
(LABOCA). A modified blackbody spectrum fit to the stacked flux densities
indicates a median [interquartile] star-formation rate of SFR = 63 [48, 81]
Msun yr^-1 . We note that not properly accounting for correlations between
bands when fitting stacked data can significantly bias the result. The galaxies
are divided into two groups, disk-like and spheroid-like, according to their
Sersic indices, n. We find evidence that most of the star formation is
occurring in n \leq 2 (disk-like) galaxies, with median [interquartile] SFR =
122 [100,150] Msun yr^-1, while there are indications that the n > 2
(spheroid-like) population may be forming stars at a median [interquartile] SFR
= 14 [9,20] Msun yr^-1, if at all. Finally, we show that star formation is a
plausible mechanism for size evolution in this population as a whole, but find
only marginal evidence that it is what drives the expansion of the
spheroid-like galaxies.Comment: Accepted by MNRAS. 10 pages, 3 figures, 3 table
Recommended from our members
Galactose Metabolism Plays a Crucial Role in Biofilm Formation by Bacillus subtilis
Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources.Molecular and Cellular Biolog
Plasmacytoid dendritic cells migrate in afferent skin lymph (Correction: vol 180, pg 5963, 2008)
Muon Simulations for Super-Kamiokande, KamLAND and CHOOZ
Muon backgrounds at Super-Kamiokande, KamLAND and CHOOZ are calculated using
MUSIC. A modified version of the Gaisser sea level muon distribution and a
well-tested Monte Carlo integration method are introduced. Average muon energy,
flux and rate are tabulated. Plots of average energy and angular distributions
are given. Implications on muon tracker design for future experiments are
discussed.Comment: Revtex4 33 pages, 16 figures and 4 table
Combining the Hybrid Functional Method with Dynamical Mean-Field Theory
We present a new method to compute the electronic structure of correlated
materials combining the hybrid functional method with the dynamical mean-field
theory. As a test example of the method we study cerium sesquioxide, a strongly
correlated Mott-band insulator. The hybrid functional part improves the
magnitude of the pd-band gap which is underestimated in the standard
approximations to density functional theory while the dynamical mean-field
theory part splits the 4f-electron spectra into a lower and an upper Hubbard
band.Comment: 5 pages, 2 figures, replaced with revised version, published in
Europhys. Let
Preparation of acetazolamide composite microparticles by supercritical antisolvent techniques
The possibility of preparation of ophthalmic drug delivery systems using compressed anti-solvent technology was evaluated. and RL 100 were used as drug carriers, acetazolamide was the model drug processed. Compressed anti-solvent experiments were carried out as
a semi-continuous or a batch operation from a liquid solution of polymer(s) + solute dissolved in acetone. Both techniques allowed the recovery
of composite particles, but the semi-continuous operation yielded smaller and less aggregated populations than the batch operation. The release
behaviour of acetazolamide from the prepared microparticles was studied and most products exhibited a slower release than the single drug.
Moreover, the release could be controlled to some extent by varying the ratio of the two Eudragit used in the formulation and by selecting one
or the other anti-solvent technique. Simple diffusion models satisfactorily described the release profiles. Composites specifically produced by
semi-continuous technique have a drug release rate controlled by a diffusion mechanism, whereas for composites produced by the batch operation,
the polymer swelling also contributes to the overall transport mechanism
- …
