7,408 research outputs found
Role of Metastable States in Phase Ordering Dynamics
We show that the rate of separation of two phases of different densities
(e.g. gas and solid) can be radically altered by the presence of a metastable
intermediate phase (e.g. liquid). Within a Cahn-Hilliard theory we study the
growth in one dimension of a solid droplet from a supersaturated gas. A moving
interface between solid and gas phases (say) can, for sufficient (transient)
supersaturation, unbind into two interfaces separated by a slab of metastable
liquid phase. We investigate the criteria for unbinding, and show that it may
strongly impede the growth of the solid phase.Comment: 4 pages, Latex, Revtex, epsf. Updated two reference
Functional specialization of the yeast Rho1 GTP exchange factors
Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localize differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localization is largely dependent on Ack1, a SEL1 domain containing protein; Tus1 function and localization is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1
Shear banding and flow-concentration coupling in colloidal glasses
We report experiments on hard sphere colloidal glasses that reveal a type of
shear banding hitherto unobserved in soft glasses. We present a scenario that
relates this to an instability arising from shear-concentration coupling, a
mechanism previously thought unimportant in this class of materials. Below a
characteristic shear rate we observe increasingly non-linear
velocity profiles and strongly localized flows. We attribute this trend to very
slight concentration gradients (likely to evade direct detection) arising in
the unstable flow regime. A simple model accounts for both the observed
increase of with concentration, and the fluctuations observed in
the flow.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
Crystallization of hard-sphere glasses
We study by molecular dynamics the interplay between arrest and
crystallization in hard spheres. For state points in the plane of volume
fraction () and polydispersity (), we delineate states that spontaneously crystallize from those that do
not. For noncrystallizing (or precrystallization) samples we find
isodiffusivity lines consistent with an ideal glass transition at , independent of . Despite this, for , crystallization
occurs at . This happens on time scales for which the system is
aging, and a diffusive regime in the mean square displacement is not reached;
by those criteria, the system is a glass. Hence, contrary to a widespread
assumption in the colloid literature, the occurrence of spontaneous
crystallization within a bulk amorphous state does not prove that this state
was an ergodic fluid rather than a glass.Comment: 4 pages, 3 figure
Colloidal gelation and non-ergodicity transitions
Within the framework of the mode coupling theory (MCT) of structural
relaxation, mechanisms and properties of non-ergodicity transitions in rather
dilute suspensions of colloidal particles characterized by strong short-ranged
attractions are studied. Results building on the virial expansion for particles
with hard cores and interacting via an attractive square well potential are
presented, and their relevance to colloidal gelation is discussed.Comment: 10 pages, 4 figures; Talk at the Conference: "Unifying Concepts in
Glass Physics" ICTP Trieste, September 1999; to be published in J. Phys.:
Condens. Matte
Polydispersity Effects in Colloid-Polymer Mixtures
We study phase separation and transient gelation in a mixture consisting of
polydisperse colloids and non-adsorbing polymers, where the ratio of the
average size of the polymer to that of the colloid is approximately 0.063.
Unlike what has been reported previously for mixtures with somewhat lower
colloid polydispersity, the addition of polymers does not expand the
fluid-solid coexistence region. Instead, we find a region of fluid-solid
coexistence which has an approximately constant width but an unexpected
re-entrant shape. We detect the presence of a metastable gas-liquid binodal,
which gives rise to two-stepped crystallization kinetics that can be
rationalized as the effect of fractionation. Finally, we find that the
separation into multiple coexisting solid phases at high colloid volume
fractions predicted by equilibrium statistical mechanics is kinetically
suppressed before the system reaches dynamical arrest.Comment: 11 pages, 5 figure
Does gravity cause load-bearing bridges in colloidal and granular systems?
We study structures which can bear loads, "bridges", in particulate packings. To investigate the relationship between bridges and gravity, we experimentally determine bridge statistics in colloidal packings. We vary the effective magnitude and direction of gravity, volume fraction, and interactions, and find that the bridge size distributions depend only on the mean number of neighbors. We identify a universal distribution, in agreement with simulation results for granulars, suggesting that applied loads merely exploit preexisting bridges, which are inherent in dense packings
Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures
By analytically solving some simple models of phase-ordering kinetics, we
suggest a mechanism for the onset of non-equilibrium behaviour in
colloid-polymer mixtures. These mixtures can function as models of atomic
systems; their physics therefore impinges on many areas of thermodynamics and
phase-ordering. An exact solution is found for the motion of a single, planar
interface separating a growing phase of uniform high density from a
supersaturated low density phase, whose diffusive depletion drives the
interfacial motion. In addition, an approximate solution is found for the
one-dimensional evolution of two interfaces, separated by a slab of a
metastable phase at intermediate density. The theory predicts a critical
supersaturation of the low-density phase, above which the two interfaces become
unbound and the metastable phase grows ad infinitum. The growth of the stable
phase is suppressed in this regime.Comment: 27 pages, Latex, eps
- …
