1,557 research outputs found

    Tunneling Via Individual Electronic States in Ferromagnetic Nanoparticles

    Full text link
    We measure electron tunneling via discrete energy levels in ferromagnetic cobalt particles less than 4 nm in diameter, using non-magnetic electrodes. Due to magnetic anisotropy, the energy of each tunneling resonance shifts as an applied magnetic field rotates the particle's magnetic moment. We see both spin-increasing and decreasing tunneling transitions, but we do not observe the spin degeneracy at small magnetic fields seen previously in non-magnetic materials. The tunneling spectrum is denser than predicted for independent electrons, possibly due to spin-wave excitations.Comment: 4 pages, 4 figures. Improved by comments from referees, to appear in Phys. Rev. Let

    Semiclassical theory of electron drag in strong magnetic fields

    Full text link
    We present a semiclassical theory for electron drag between two parallel two-dimensional electron systems in a strong magnetic field, which provides a transparent picture of the most salient qualitative features of anomalous drag phenomena observed in recent experiments, especially the striking sign reversal of drag at mismatched densities. The sign of the drag is determined by the curvature of the effective dispersion relation obeyed by the drift motion of the electrons in a smooth disorder potential. Localization plays a role in explaining activated low temperature behavior, but is not crucial for anomalous drag per se.Comment: 10 page

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    Get PDF
    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs

    Multiple shades of grey: Opening the black box of public sector executives' hybrid role identities

    Get PDF
    Public sector reforms of recent decades in Europe have promoted managerialism and aimed at introducing private sector thinking and practices. However, with regard to public sector executives' self-understanding, managerial role identities have not replaced bureaucratic ones; rather, components from both paradigms have combined. In this article, we introduce a bi-dimensional approach (attitudes and practices) that allows for different combinations and forms of hybridity. Empirically, we explore the role identities of public sector executives across Europe, building on survey data from over 7,000 top public officials in 19 countries (COCOPS survey). We identify country-level profiles, as well as patterns across countries, and find that administrative traditions can account for these profiles and patterns only to a limited extent. Rather, they have to be complemented by factors such as stability of the institutional environment (indicating lower shares of hybrid combinations) or extent of reform pressures (indicating higher shares of hybrid combinations)

    Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    Get PDF
    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    Rule-based modeling of biochemical systems with BioNetGen

    Get PDF
    Totowa, NJ. Please cite this article when referencing BioNetGen in future publications. Rule-based modeling involves the representation of molecules as structured objects and molecular interactions as rules for transforming the attributes of these objects. The approach is notable in that it allows one to systematically incorporate site-specific details about proteinprotein interactions into a model for the dynamics of a signal-transduction system, but the method has other applications as well, such as following the fates of individual carbon atoms in metabolic reactions. The consequences of protein-protein interactions are difficult to specify and track with a conventional modeling approach because of the large number of protein phosphoforms and protein complexes that these interactions potentially generate. Here, we focus on how a rule-based model is specified in the BioNetGen language (BNGL) and how a model specification is analyzed using the BioNetGen software tool. We also discuss new developments in rule-based modeling that should enable the construction and analyses of comprehensive models for signal transduction pathways and similarly large-scale models for other biochemical systems. Key Words: Computational systems biology; mathematical modeling; combinatorial complexity; software; formal languages; stochastic simulation; ordinary differential equations; protein-protein interactions; signal transduction; metabolic networks. 1
    corecore