32,534 research outputs found

    Modulated amplitude waves with nonzero phases in Bose-Einstein condensates

    Full text link
    In this paper we give a frame for application of the averaging method to Bose-Einstein condensates (BECs) and obtain an abstract result upon the dynamics of BECs. Using aver- aging method, we determine the location where the modulated amplitude waves (periodic or quasi-periodic) exist and we also study the stability and instability of modulated amplitude waves (periodic or quasi-periodic). Compared with the previous work, modulated amplitude waves studied in this paper have nontrivial phases and this makes the problem become more diffcult, since it involves some singularities.Comment: 17 pages, 2 figure

    An ab initio investigation on the endohedral metallofullerene Gd 3 N – C 80

    Get PDF
    First-principles electronic structure studies on the ground state geometry and electronic and magnetic properties of bare and hydrogen coated metallofullerene Gd3N–C80 have been carried out within a density functional formalism. The correlation effects are incorporated either through a generalized gradient corrected functional or through an on-site Coulomb interaction (LDA+U). It is shown that the bare Gd3N–C80 possess a ferromagnetic ground state with a large spin moment of 21μB that is highly stable against spin fluctuations. The simulated Raman spectrum shows that the low-energy peaks are contributed by the floppy movement of N atom. As to the effect of addition of hydrogens, it is shown that the most favorable site for the hydrogen adsorption is an on-top site where the H atom is located above a five-member carbon ring with a binding energy of 1.92eV, while the least stable site corresponds to an on-top absorption above a six-member ring. A study of the energetics upon multiple adsorption of H shows that the binding energy of the H to metallofullerene drops after 11 H atoms. This shows that it should be possible to attach multiple ligands offering the potential that the Gd3N–C80 can be functionalized with ligands or assembled in cluster assemblies

    Phase Diagram of Rydberg atoms in a nonequilibrium optical lattice

    Full text link
    We study the quantum nonequilibrium dynamics of ultracold three-level atoms trapped in an optical lattice, which are excited to their Rydberg states via a two-photon excitation with nonnegligible spontaneous emission. Rich quantum phases including uniform phase, antiferromagnetic phase and oscillatory phase are identified. We map out the phase diagram and find these phases can be controlled by adjusting the ratio of intensity of the pump light to the control light, and that of two-photon detuning to the Rydberg interaction strength. When the two-photon detuning is blue-shifted and the latter ratio is less than 1, bistability exists among the phases. Actually, this ratio controls the Rydberg-blockade and antiblockade effect, thus the phase transition in this system can be considered as a possible approach to study both effects.Comment: 5 pages,5 figure

    Axisymmetric Self-Similar Equilibria of Self-Gravitating Isothermal Systems

    Get PDF
    All axisymmetric self-similar equilibria of self-gravitating, rotating, isothermal systems are identified by solving the nonlinear Poisson equation analytically. There are two families of equilibria: (1) Cylindrically symmetric solutions in which the density varies with cylindrical radius as R^(-alpha), with 0 <= alpha <= 2. (2) Axially symmetric solutions in which the density varies as f(theta)/r^2, where `r' is the spherical radius and `theta' is the co-latitude. The singular isothermal sphere is a special case of the latter class with f(theta)=constant. The axially symmetric equilibrium configurations form a two-parameter family of solutions and include equilibria which are surprisingly asymmetric with respect to the equatorial plane. The asymmetric equilibria are, however, not force-free at the singular points r=0, infinity, and their relevance to real systems is unclear. For each hydrodynamic equilibrium, we determine the phase-space distribution of the collisionless analog.Comment: 13 pages, 7 figures, uses emulateapj.sty. Submitted to Ap

    Theory of I-V Characteristics of Magnetic Josephson Junctions

    Full text link
    We analyze the electrical characteristics of a circuit consisting of a free thin-film magnetic layer and source and drain electrodes that have opposite magnetization orientations along the free magnet's two hard directions. We find that when the circuit's current exceeds a critical value there is a sudden resistance increase which can be large in relative terms if the currents to source or drain are strongly spin polarized and the free magnet is thin. This behavior can be partly understood in terms of a close analogy between the magnetic circuit and a Josephson junction

    The Dynamics of Zeroth-Order Ultrasensitivity: A Critical Phenomenon in Cell Biology

    Full text link
    It is well known since the pioneering work of Goldbeter and Koshland [Proc. Natl. Acad. Sci. USA, vol. 78, pp. 6840-6844 (1981)] that cellular phosphorylation- dephosphorylation cycle (PdPC), catalyzed by kinase and phosphatase under saturated condition with zeroth order enzyme kinetics, exhibits ultrasensitivity, sharp transition. We analyse the dynamics aspects of the zeroth order PdPC kinetics and show a critical slowdown akin to the phase transition in condensed matter physics. We demonstrate that an extremely simple, though somewhat mathematically "singular" model is a faithful representation of the ultrasentivity phenomenon. The simplified mathematical model will be valuable, as a component, in developing complex cellular signaling network theory as well as having a pedagogic value.Comment: 8 pages, 3 figure

    Entropy Production of Brownian Macromolecules with Inertia

    Full text link
    We investigate the nonequilibrium steady-state thermodynamics of single Brownian macromolecules with inertia under feedback control in isothermal ambient fluid. With the control being represented by a velocity-dependent external force, we find such open systems can have a negative entropy production rate and we develop a mesoscopic theory consistent with the second law. We propose an equilibrium condition and define a class of external forces, which includes a transverse Lorentz force, leading to equilibrium.Comment: 10 pages, 1 figur

    Nucleosynthesis of Nickel-56 from Gamma-Ray Burst Accretion Disks

    Full text link
    We examine the prospects for producing Nickel-56 from black hole accretion disks, by examining a range of steady state disk models. We focus on relatively slowly accreting disks in the range of 0.05 - 1 solar masses per second, as are thought to be appropriate for the central engines of long-duration gamma-ray bursts. We find that significant amounts of Nickel-56 are produced over a wide range of parameter space. We discuss the influence of entropy, outflow timescale and initial disk position on mass fraction of Nickel-56 which is produced. We keep careful track of the weak interactions to ensure reliable calculations of the electron fraction, and discuss the role of the neutrinos.Comment: 10 pages, 9 figure
    corecore