9,378 research outputs found
Spin-charge separation: From one hole to finite doping
In the presence of nonlocal phase shift effects, a quasiparticle can remain
topologically stable even in a spin-charge separation state due to the
confinement effect introduced by the phase shifts at finite doping. True
deconfinement only happens in the zero-doping limit where a bare hole can lose
its integrity and decay into holon and spinon elementary excitations. The Fermi
surface structure is completely different in these two cases, from a large
band-structure-like one to four Fermi points in one-hole case, and we argue
that the so-called underdoped regime actually corresponds to a situation in
between.Comment: 4 pages, 2 figures, presented in M2S-HTSC-VI conference (2000
Calculated NMR T_2 relaxation due to vortex vibrations in cuprate superconductors
We calculate the rate of transverse relaxation arising from vortex motion in
the mixed state of YBa_2Cu_3O_7 with the static field applied along the c axis.
The vortex dynamics are described by an overdamped Langevin equation with a
harmonic elastic free energy. We find that the variation of the relaxation with
temperature, average magnetic field, and local field is consistent with
experiments; however, the calculated time dependence is different from what has
been measured and the value of the rates calculated is roughly two orders of
magnitude slower than what is observed. Combined with the strong experimental
evidence pointing to vortex motion as the dominant mechanism for T_2
relaxation, these results call into question a prior conclusion that vortex
motion is not significant in T_1 measurements in the vortex state.Comment: 6 pages, 5 figures, to be published in Phys. Rev.
Phase String Effect in the t-J Model: General Theory
We reexamine the problem of a hole moving in an antiferromagnetic spin
background and find that the injected hole will always pick up a sequence of
nontrivial phases from the spin degrees of freedom. Previously unnoticed, such
a string-like phase originates from the hidden Marshall signs which are
scrambled by the hopping of the hole. We can rigorously show that this phase
string is non-repairable at low energy and give a general proof that the
spectral weight Z must vanish at the ground-state energy due to the phase
string effect. Thus, the quasiparticle description fails here and the quantum
interference effect of the phase string dramatically affects the long-distance
behavior of the injected hole. We introduce a so-called phase-string
formulation of the t-J model for a general number of holes in which the phase
string effect can be explicitly tracked. As an example, by applying this new
mathematical formulation in one dimension, we reproduce the well-known
Luttinger-liquid behaviors of the asymptotic single-electron Green's function
and the spin-spin correlation function. We can also use the present phase
string theory to justify previously developed spin-charge separation theory in
two dimensions, which offers a systematic explanation for the transport and
magnetic anomalies in the high-T_c cuprates.Comment: Revtex, 36 pages, no figure, to appear in Phys. Rev. B
Aspiration of Aluminum Beverage Can Tab: Case Report and Literature Review
We describe the case of a 16-year-old male who aspirated a beverage can tab resulting in significant functional impairment. Since the introduction of beverage can opening tabs ("pop-tops" or "pull-tabs") nearly 50 years ago, five cases of their aspiration have been reported in the literature and this is the first case to report tracheal lodgment. We describe the clinical course for this patient including the inadequacy of radiographic evaluation and a significant delay in diagnosis. We highlight unique features of small aluminum foreign bodies that require consideration and mention a potential change in epidemiology associated with evolving product design. Our primary objective is increased awareness among otolaryngologists that radiography is unreliable for diagnosis or localization of small aluminum foreign bodies. The patient history must therefore be incorporated with other imaging modalities and/or endoscopic evaluation. Also, given the marked prevalence of aluminum beverage cans, we suspect that the inadvertent aspiration of can tabs is more common than indicated by the paucity of published reports
A Tale of Two Narrow-Line Regions: Ionization, Kinematics, and Spectral Energy Distributions for a Local Pair of Merging Obscured Active Galaxies
We explore the gas ionization and kinematics, as well as the optical--IR
spectral energy distributions for UGC 11185, a nearby pair of merging galaxies
hosting obscured active galactic nuclei (AGNs), also known as SDSS
J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, ). Due to the wide separation between these interacting galaxies ( kpc), observations of these objects provide a rare glimpse of the
concurrent growth of supermassive black holes at an early merger stage. We use
BPT line diagnostics to show that the full extent of the narrow line emission
in both galaxies is photoionized by an AGN and confirm the existence of a
10-kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line
region is much more compact (1--2 kpc) and relatively undisturbed. Our
observations also reveal the presence of ionized gas that nearly spans the
entire distance between the galaxies which is likely in a merger-induced tidal
stream. In addition, we carry out a spectral analysis of the X-ray emission
using data from {\em XMM-Newton}. These galaxies represent a useful pair to
explore how the [\ion{O}{3}] luminosity of an AGN is dependent on the size of
the region used to explore the extended emission. Given the growing evidence
for AGN "flickering" over short timescales, we speculate that the appearances
and impact of these AGNs may change multiple times over the course of the
galaxy merger, which is especially important given that these objects are
likely the progenitors of the types of systems commonly classified as "dual
AGNs."Comment: 15 pages, 10 figures, accepted by the Astrophysical Journa
Collective Excitations, Nambu-Goldstone Modes and Instability of Inhomogeneous Polariton Condensates
We study non-equilibrium microcavity-polariton condensates (MPCs) in a
harmonic potential trap theoretically. We calculate and analyze the steady
state, collective-excitation modes and instability of MPCs. Within excitation
modes, there exist Nambu-Goldstone modes that can reveal the pattern of the
spontaneous symmetry breaking of MPCs. Bifurcation of the stable and unstable
modes is identified in terms of the pumping power and spot size. The unstable
mechanism associated with the inward supercurrent flow is characterized by the
existence of a supersonic region within the condensate.Comment: 16 pages, 3 figure
- …
