9,378 research outputs found

    Spin-charge separation: From one hole to finite doping

    Full text link
    In the presence of nonlocal phase shift effects, a quasiparticle can remain topologically stable even in a spin-charge separation state due to the confinement effect introduced by the phase shifts at finite doping. True deconfinement only happens in the zero-doping limit where a bare hole can lose its integrity and decay into holon and spinon elementary excitations. The Fermi surface structure is completely different in these two cases, from a large band-structure-like one to four Fermi points in one-hole case, and we argue that the so-called underdoped regime actually corresponds to a situation in between.Comment: 4 pages, 2 figures, presented in M2S-HTSC-VI conference (2000

    Calculated NMR T_2 relaxation due to vortex vibrations in cuprate superconductors

    Full text link
    We calculate the rate of transverse relaxation arising from vortex motion in the mixed state of YBa_2Cu_3O_7 with the static field applied along the c axis. The vortex dynamics are described by an overdamped Langevin equation with a harmonic elastic free energy. We find that the variation of the relaxation with temperature, average magnetic field, and local field is consistent with experiments; however, the calculated time dependence is different from what has been measured and the value of the rates calculated is roughly two orders of magnitude slower than what is observed. Combined with the strong experimental evidence pointing to vortex motion as the dominant mechanism for T_2 relaxation, these results call into question a prior conclusion that vortex motion is not significant in T_1 measurements in the vortex state.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    Phase String Effect in the t-J Model: General Theory

    Full text link
    We reexamine the problem of a hole moving in an antiferromagnetic spin background and find that the injected hole will always pick up a sequence of nontrivial phases from the spin degrees of freedom. Previously unnoticed, such a string-like phase originates from the hidden Marshall signs which are scrambled by the hopping of the hole. We can rigorously show that this phase string is non-repairable at low energy and give a general proof that the spectral weight Z must vanish at the ground-state energy due to the phase string effect. Thus, the quasiparticle description fails here and the quantum interference effect of the phase string dramatically affects the long-distance behavior of the injected hole. We introduce a so-called phase-string formulation of the t-J model for a general number of holes in which the phase string effect can be explicitly tracked. As an example, by applying this new mathematical formulation in one dimension, we reproduce the well-known Luttinger-liquid behaviors of the asymptotic single-electron Green's function and the spin-spin correlation function. We can also use the present phase string theory to justify previously developed spin-charge separation theory in two dimensions, which offers a systematic explanation for the transport and magnetic anomalies in the high-T_c cuprates.Comment: Revtex, 36 pages, no figure, to appear in Phys. Rev. B

    Aspiration of Aluminum Beverage Can Tab: Case Report and Literature Review

    Get PDF
    We describe the case of a 16-year-old male who aspirated a beverage can tab resulting in significant functional impairment. Since the introduction of beverage can opening tabs ("pop-tops" or "pull-tabs") nearly 50 years ago, five cases of their aspiration have been reported in the literature and this is the first case to report tracheal lodgment. We describe the clinical course for this patient including the inadequacy of radiographic evaluation and a significant delay in diagnosis. We highlight unique features of small aluminum foreign bodies that require consideration and mention a potential change in epidemiology associated with evolving product design. Our primary objective is increased awareness among otolaryngologists that radiography is unreliable for diagnosis or localization of small aluminum foreign bodies. The patient history must therefore be incorporated with other imaging modalities and/or endoscopic evaluation. Also, given the marked prevalence of aluminum beverage cans, we suspect that the inadvertent aspiration of can tabs is more common than indicated by the paucity of published reports

    A Tale of Two Narrow-Line Regions: Ionization, Kinematics, and Spectral Energy Distributions for a Local Pair of Merging Obscured Active Galaxies

    Get PDF
    We explore the gas ionization and kinematics, as well as the optical--IR spectral energy distributions for UGC 11185, a nearby pair of merging galaxies hosting obscured active galactic nuclei (AGNs), also known as SDSS J181611.72+423941.6 and J181609.37+423923.0 (J1816NE and J1816SW, z0.04z \approx 0.04). Due to the wide separation between these interacting galaxies (23\sim 23 kpc), observations of these objects provide a rare glimpse of the concurrent growth of supermassive black holes at an early merger stage. We use BPT line diagnostics to show that the full extent of the narrow line emission in both galaxies is photoionized by an AGN and confirm the existence of a 10-kpc-scale ionization cone in J1816NE, while in J1816SW the AGN narrow-line region is much more compact (1--2 kpc) and relatively undisturbed. Our observations also reveal the presence of ionized gas that nearly spans the entire distance between the galaxies which is likely in a merger-induced tidal stream. In addition, we carry out a spectral analysis of the X-ray emission using data from {\em XMM-Newton}. These galaxies represent a useful pair to explore how the [\ion{O}{3}] luminosity of an AGN is dependent on the size of the region used to explore the extended emission. Given the growing evidence for AGN "flickering" over short timescales, we speculate that the appearances and impact of these AGNs may change multiple times over the course of the galaxy merger, which is especially important given that these objects are likely the progenitors of the types of systems commonly classified as "dual AGNs."Comment: 15 pages, 10 figures, accepted by the Astrophysical Journa

    Collective Excitations, Nambu-Goldstone Modes and Instability of Inhomogeneous Polariton Condensates

    Full text link
    We study non-equilibrium microcavity-polariton condensates (MPCs) in a harmonic potential trap theoretically. We calculate and analyze the steady state, collective-excitation modes and instability of MPCs. Within excitation modes, there exist Nambu-Goldstone modes that can reveal the pattern of the spontaneous symmetry breaking of MPCs. Bifurcation of the stable and unstable modes is identified in terms of the pumping power and spot size. The unstable mechanism associated with the inward supercurrent flow is characterized by the existence of a supersonic region within the condensate.Comment: 16 pages, 3 figure
    corecore