115,276 research outputs found

    Liouville and Toda Solitons in M-theory

    Full text link
    We study the general form of the equations for isotropic single-scalar, multi-scalar and dyonic pp-branes in superstring theory and M-theory, and show that they can be cast into the form of Liouville, Toda (or Toda-like) equations. The general solutions describe non-extremal isotropic pp-branes, reducing to the previously-known extremal solutions in limiting cases. In the non-extremal case, the dilatonic scalar fields are finite at the outer event horizon.Comment: Latex, 10 pages. Minor corrections to text and titl

    Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum

    Full text link
    We study weakly-bound deformed nuclei based on the coordinate-space Skyrme Hartree-Fock-Bogoliubov approach, in which a large box is employed for treating the continuum and surface diffuseness. Approaching the limit of core-halo deformation decoupling, calculations found an exotic "egg"-like structure consisting of a spherical core plus a prolate halo in 38^{38}Ne, in which the resonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei are reduced compared to light nuclei, due to denser level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible with sparse levels of negative parity, for example, in 110^{110}Ge. The surface deformations of pairing density distributions are also influenced by the decoupling effect and are sensitive to the effective pairing Hamiltonian.Comment: 5 pages and 5 figure

    Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems: II. Dipole-dipole versus current-current correlations

    Full text link
    Based on Takayama-Lin-Liu-Maki model, analytical expressions for the third-harmonic generation, DC Kerr effect, DC-induced second harmonic optical Kerr effect, optical Kerr effect or intensity-dependent index of refraction and DC-electric-field-induced optical rectification are derived under the static current-current(J0J0J_0J_0) correlation for one-dimensional infinite chains. The results of hyperpolarizabilities under J0J0J_0J_0 correlation are then compared with those obtained using the dipole-dipole (DDDD) correlation. The comparison shows that the conventional J0J0J_0J_0 correlation, albeit quite successful for the linear case, is incorrect for studying the nonlinear optical properties of periodic systems.Comment: 11 pages, 5 figure

    Odd-even mass staggering with Skyrme-Hartree-Fock-Bogoliubov theory

    Full text link
    We have studied odd-even nuclear mass staggering with the Skyrme-Hartree-Fock-Bogoliubov theory by employing isoscalar and isovector contact pairing interactions. By reproducing the empirical odd-even mass differences of the Sn isotopic chain, the strengths of pairing interactions are determined. The optimal strengths adjusted in this work can give better description of odd-even mass differences than that fitted by reproducing the experimental neutron pairing gap of 120^{120}Sn.Comment: 9 pages, 3 figures, submitted to PRC Brief Repor

    Dissipative dynamics of quantum discord under quantum chaotic environment

    Full text link
    We investigate the dissipative dynamics of quantum discord in a decoherence model with two initially entangled qubits in addition to a quantum kicked top. The two qubits are uncoupled during the period of our study and one of them interacts with the quantum kicked top. We find that the long time behavior of quantum discord could be well described by the fidelity decay of the quantum kicked top; for short time behavior, however, the phase of the amplitude of the fidelity decay is necessary to provide more specific information about the system. We have made comparison between the quantum kicked top and multi-mode oscillator system in describing environment, and also compared the dynamics of the entanglement with that of quantum discord.Comment: 5 pages, 3 figures, and Accepted by Europhysics Letter

    Higher-spin Realisations of the Bosonic String

    Get PDF
    It has been shown that certain WW algebras can be linearised by the inclusion of a spin--1 current. This provides a way of obtaining new realisations of the WW algebras. Recently such new realisations of W3W_3 were used in order to embed the bosonic string in the critical and non-critical W3W_3 strings. In this paper, we consider similar embeddings in W2,4W_{2,4} and W2,6W_{2,6} strings. The linearisation of W2,4W_{2,4} is already known, and can be achieved for all values of central charge. We use this to embed the bosonic string in critical and non-critical W2,4W_{2,4} strings. We then derive the linearisation of W2,6W_{2,6} using a spin--1 current, which turns out to be possible only at central charge c=390c=390. We use this to embed the bosonic string in a non-critical W2,6W_{2,6} string.Comment: 8 pages. CTP TAMU-10/95

    Integer quantum Hall effect and topological phase transitions in silicene

    Full text link
    We numerically investigate the effects of disorder on the quantum Hall effect (QHE) and the quantum phase transitions in silicene based on a lattice model. It is shown that for a clean sample, silicene exhibits an unconventional QHE near the band center, with plateaus developing at ν=0,±2,±6,,\nu=0,\pm2,\pm6,\ldots, and a conventional QHE near the band edges. In the presence of disorder, the Hall plateaus can be destroyed through the float-up of extended levels toward the band center, in which higher plateaus disappear first. However, the center ν=0\nu=0 Hall plateau is more sensitive to disorder and disappears at a relatively weak disorder strength. Moreover, the combination of an electric field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase transitions from a topological insulator to a band insulator at the charge neutrality point (CNP), accompanied by additional quantum Hall conductivity plateaus.Comment: 7 pages, 4 figure

    White Lines and 3d-Occupancy for the 3d Transition-Metal Oxides

    Get PDF
    Electron energy-loss spectrometry was employed to measure the white lines at the L23 absorption edges of the 3d transition-metal oxides and lithium transition-metal oxides. The white-line ratio (L3/L2) was found to increase between d^0 and d^5 and decrease between d^5 and d^10, consistent with previous results for the transition metals and their oxides. The intensities of the white lines, normalized to the post-edge background, are linear for the 3d transition-metal oxides and lithium transition-metal oxides. An empirical correlation between normalized white-line intensity and 3d occupancy is established. It provides a method for measuring changes in the 3d-state occupancy. As an example, this empirical relationship is used to measure changes in the transition-metal valences of Li_{1-x}Ni_{0.8}Co_{0.2}O_2 in the range of 0 < x < 0.64. In these experiments the 3d occupancy of the nickel ion decreased upon lithium deintercalation, while the cobalt valence remained constant.Comment: 6 pages, 7 figure
    corecore