115,276 research outputs found
Liouville and Toda Solitons in M-theory
We study the general form of the equations for isotropic single-scalar,
multi-scalar and dyonic -branes in superstring theory and M-theory, and show
that they can be cast into the form of Liouville, Toda (or Toda-like)
equations. The general solutions describe non-extremal isotropic -branes,
reducing to the previously-known extremal solutions in limiting cases. In the
non-extremal case, the dilatonic scalar fields are finite at the outer event
horizon.Comment: Latex, 10 pages. Minor corrections to text and titl
Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum
We study weakly-bound deformed nuclei based on the coordinate-space Skyrme
Hartree-Fock-Bogoliubov approach, in which a large box is employed for treating
the continuum and surface diffuseness. Approaching the limit of core-halo
deformation decoupling, calculations found an exotic "egg"-like structure
consisting of a spherical core plus a prolate halo in Ne, in which the
resonant continuum plays an essential role. Generally the halo probability and
the decoupling effect in heavy nuclei are reduced compared to light nuclei, due
to denser level densities around Fermi surfaces. However, deformed halos in
medium-mass nuclei are possible with sparse levels of negative parity, for
example, in Ge. The surface deformations of pairing density
distributions are also influenced by the decoupling effect and are sensitive to
the effective pairing Hamiltonian.Comment: 5 pages and 5 figure
Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems: II. Dipole-dipole versus current-current correlations
Based on Takayama-Lin-Liu-Maki model, analytical expressions for the
third-harmonic generation, DC Kerr effect, DC-induced second harmonic optical
Kerr effect, optical Kerr effect or intensity-dependent index of refraction and
DC-electric-field-induced optical rectification are derived under the static
current-current() correlation for one-dimensional infinite chains. The
results of hyperpolarizabilities under correlation are then compared
with those obtained using the dipole-dipole () correlation. The comparison
shows that the conventional correlation, albeit quite successful for
the linear case, is incorrect for studying the nonlinear optical properties of
periodic systems.Comment: 11 pages, 5 figure
Odd-even mass staggering with Skyrme-Hartree-Fock-Bogoliubov theory
We have studied odd-even nuclear mass staggering with the
Skyrme-Hartree-Fock-Bogoliubov theory by employing isoscalar and isovector
contact pairing interactions. By reproducing the empirical odd-even mass
differences of the Sn isotopic chain, the strengths of pairing interactions are
determined. The optimal strengths adjusted in this work can give better
description of odd-even mass differences than that fitted by reproducing the
experimental neutron pairing gap of Sn.Comment: 9 pages, 3 figures, submitted to PRC Brief Repor
Dissipative dynamics of quantum discord under quantum chaotic environment
We investigate the dissipative dynamics of quantum discord in a decoherence
model with two initially entangled qubits in addition to a quantum kicked top.
The two qubits are uncoupled during the period of our study and one of them
interacts with the quantum kicked top. We find that the long time behavior of
quantum discord could be well described by the fidelity decay of the quantum
kicked top; for short time behavior, however, the phase of the amplitude of the
fidelity decay is necessary to provide more specific information about the
system. We have made comparison between the quantum kicked top and multi-mode
oscillator system in describing environment, and also compared the dynamics of
the entanglement with that of quantum discord.Comment: 5 pages, 3 figures, and Accepted by Europhysics Letter
Higher-spin Realisations of the Bosonic String
It has been shown that certain algebras can be linearised by the
inclusion of a spin--1 current. This provides a way of obtaining new
realisations of the algebras. Recently such new realisations of were
used in order to embed the bosonic string in the critical and non-critical
strings. In this paper, we consider similar embeddings in and
strings. The linearisation of is already known, and can be
achieved for all values of central charge. We use this to embed the bosonic
string in critical and non-critical strings. We then derive the
linearisation of using a spin--1 current, which turns out to be
possible only at central charge . We use this to embed the bosonic
string in a non-critical string.Comment: 8 pages. CTP TAMU-10/95
Integer quantum Hall effect and topological phase transitions in silicene
We numerically investigate the effects of disorder on the quantum Hall effect
(QHE) and the quantum phase transitions in silicene based on a lattice model.
It is shown that for a clean sample, silicene exhibits an unconventional QHE
near the band center, with plateaus developing at and
a conventional QHE near the band edges. In the presence of disorder, the Hall
plateaus can be destroyed through the float-up of extended levels toward the
band center, in which higher plateaus disappear first. However, the center
Hall plateau is more sensitive to disorder and disappears at a
relatively weak disorder strength. Moreover, the combination of an electric
field and the intrinsic spin-orbit interaction (SOI) can lead to quantum phase
transitions from a topological insulator to a band insulator at the charge
neutrality point (CNP), accompanied by additional quantum Hall conductivity
plateaus.Comment: 7 pages, 4 figure
White Lines and 3d-Occupancy for the 3d Transition-Metal Oxides
Electron energy-loss spectrometry was employed to measure the white lines at
the L23 absorption edges of the 3d transition-metal oxides and lithium
transition-metal oxides. The white-line ratio (L3/L2) was found to increase
between d^0 and d^5 and decrease between d^5 and d^10, consistent with previous
results for the transition metals and their oxides. The intensities of the
white lines, normalized to the post-edge background, are linear for the 3d
transition-metal oxides and lithium transition-metal oxides. An empirical
correlation between normalized white-line intensity and 3d occupancy is
established. It provides a method for measuring changes in the 3d-state
occupancy. As an example, this empirical relationship is used to measure
changes in the transition-metal valences of Li_{1-x}Ni_{0.8}Co_{0.2}O_2 in the
range of 0 < x < 0.64. In these experiments the 3d occupancy of the nickel ion
decreased upon lithium deintercalation, while the cobalt valence remained
constant.Comment: 6 pages, 7 figure
- …
