25,508 research outputs found
Information entropy in fragmenting systems
The possibility of facing critical phenomena in nuclear fragmentation is a
topic of great interest. Different observables have been proposed to identify
such a behavior, in particular, some related to the use of information entropy
as a possible signal of critical behavior. In this work we critically examine
some of the most widespread used ones comparing its performance in bond
percolation and in the analysis of fragmenting Lennard Jones Drops.Comment: 3 pages, 3 figure
Runtime Verification of Temporal Properties over Out-of-order Data Streams
We present a monitoring approach for verifying systems at runtime. Our
approach targets systems whose components communicate with the monitors over
unreliable channels, where messages can be delayed or lost. In contrast to
prior works, whose property specification languages are limited to
propositional temporal logics, our approach handles an extension of the
real-time logic MTL with freeze quantifiers for reasoning about data values. We
present its underlying theory based on a new three-valued semantics that is
well suited to soundly and completely reason online about event streams in the
presence of message delay or loss. We also evaluate our approach
experimentally. Our prototype implementation processes hundreds of events per
second in settings where messages are received out of order.Comment: long version of the CAV 2017 pape
Critical curves in conformally invariant statistical systems
We consider critical curves -- conformally invariant curves that appear at
critical points of two-dimensional statistical mechanical systems. We show how
to describe these curves in terms of the Coulomb gas formalism of conformal
field theory (CFT). We also provide links between this description and the
stochastic (Schramm-) Loewner evolution (SLE). The connection appears in the
long-time limit of stochastic evolution of various SLE observables related to
CFT primary fields. We show how the multifractal spectrum of harmonic measure
and other fractal characteristics of critical curves can be obtained.Comment: Published versio
Pivotal Role of Reduced Glutathione in Oxygen-induced Regulation of the Na + /K + Pump in Mouse Erythrocyte Membranes
This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl− and Na+-K+-2Cl− cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activit
On Glauber modes in Soft-Collinear Effective Theory
Gluon interactions involving spectator partons in collisions at hadronic
machines are investigated. We find a class of examples in which a mode, called
Glauber gluons, must be introduced to the effective theory for consistency.Comment: 19 pages, three figures. Uses JHEP3.cl
Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2
We have used the Spitzer Space Telescope InfraRed Spectrograph (IRS) 22-μm peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASA’s Deep Impact Extended Investigation (DIXI). The comet was observed on UT 2008 August 12 and 13, while 5.5 AU from the Sun. We obtained two 200 frame sets of photometric imaging over a 2.7 hr period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comet’s antivelocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 ± 0.20 indicates a small effective radius for the nucleus of 0.57 ± 0.08 km and low geometric albedo 0.028 ± 0.009 (1σ). With this nucleus size and a water production rate of 3 × 10^(28) molecules s^(-1) at perihelion, we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU support our finding of a highly active nuclear surface. Compared to Deep Impact’s first target, comet 9P/Tempel 1, Hartley 2’s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, comet Hartley 2 should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Since the amplitude of nongravitational forces are surprisingly similar for both comets, close to the ensemble average for ecliptic comets, we conclude that comet Hartley 2 must have a much more isotropic pattern of time-averaged outgassing from its nuclear surface. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yr) at its current rate of mass loss
Magnetic Order in the 2D Heavy-Fermion System CePt2In7 studied by muSR
The low-temperature microscopic magnetic properties of the quasi-2D
heavyfermion compound, CePt2In7 are investigated by using a positive muon-spin
rotation and relaxation (?muSR) technique. Clear evidence for the formation of
a commensurate antiferromagnetic order below TN=5.40 K is presented. The
magnetic order parameter is shown to fit well to a modified BSC gap-energy
function in a strong-coupling scenario.Comment: Accepted in Journal of Physics: Conference Series (2014
Surface stress of Ni adlayers on W(110): the critical role of the surface atomic structure
Puzzling trends in surface stress were reported experimentally for Ni/W(110)
as a function of Ni coverage. In order to explain this behavior, we have
performed a density-functional-theory study of the surface stress and atomic
structure of the pseudomorphic and of several different possible 1x7
configurations for this system. For the 1x7 phase, we predict a different, more
regular atomic structure than previously proposed based on surface x-ray
diffraction. At the same time, we reproduce the unexpected experimental change
of surface stress between the pseudomorphic and 1x7 configuration along the
crystallographic surface direction which does not undergo density changes. We
show that the observed behavior in the surface stress is dominated by the
effect of a change in Ni adsorption/coordination sites on the W(110) surface.Comment: 14 pages, 3 figures Published in J. Phys.: Condens. Matter 24 (2012)
13500
Droplet shapes on structured substrates and conformal invariance
We consider the finite-size scaling of equilibrium droplet shapes for fluid
adsorption (at bulk two-phase co-existence) on heterogeneous substrates and
also in wedge geometries in which only a finite domain of the
substrate is completely wet. For three-dimensional systems with short-ranged
forces we use renormalization group ideas to establish that both the shape of
the droplet height and the height-height correlations can be understood from
the conformal invariance of an appropriate operator. This allows us to predict
the explicit scaling form of the droplet height for a number of different
domain shapes. For systems with long-ranged forces, conformal invariance is not
obeyed but the droplet shape is still shown to exhibit strong scaling
behaviour. We argue that droplet formation in heterogeneous wedge geometries
also shows a number of different scaling regimes depending on the range of the
forces. The conformal invariance of the wedge droplet shape for short-ranged
forces is shown explicitly.Comment: 20 pages, 7 figures. (Submitted to J.Phys.:Cond.Mat.
Stochastic Process Associated with Traveling Wave Solutions of the Sine-Gordon Equation
Stochastic processes associated with traveling wave solutions of the
sine-Gordon equation are presented. The structure of the forward Kolmogorov
equation as a conservation law is essential in the construction and so is the
traveling wave structure. The derived stochastic processes are analyzed
numerically. An interpretation of the behaviors of the stochastic processes is
given in terms of the equation of motion.Comment: 12 pages, 9 figures; corrected typo
- …
