25,508 research outputs found

    Information entropy in fragmenting systems

    Get PDF
    The possibility of facing critical phenomena in nuclear fragmentation is a topic of great interest. Different observables have been proposed to identify such a behavior, in particular, some related to the use of information entropy as a possible signal of critical behavior. In this work we critically examine some of the most widespread used ones comparing its performance in bond percolation and in the analysis of fragmenting Lennard Jones Drops.Comment: 3 pages, 3 figure

    Runtime Verification of Temporal Properties over Out-of-order Data Streams

    Full text link
    We present a monitoring approach for verifying systems at runtime. Our approach targets systems whose components communicate with the monitors over unreliable channels, where messages can be delayed or lost. In contrast to prior works, whose property specification languages are limited to propositional temporal logics, our approach handles an extension of the real-time logic MTL with freeze quantifiers for reasoning about data values. We present its underlying theory based on a new three-valued semantics that is well suited to soundly and completely reason online about event streams in the presence of message delay or loss. We also evaluate our approach experimentally. Our prototype implementation processes hundreds of events per second in settings where messages are received out of order.Comment: long version of the CAV 2017 pape

    Critical curves in conformally invariant statistical systems

    Full text link
    We consider critical curves -- conformally invariant curves that appear at critical points of two-dimensional statistical mechanical systems. We show how to describe these curves in terms of the Coulomb gas formalism of conformal field theory (CFT). We also provide links between this description and the stochastic (Schramm-) Loewner evolution (SLE). The connection appears in the long-time limit of stochastic evolution of various SLE observables related to CFT primary fields. We show how the multifractal spectrum of harmonic measure and other fractal characteristics of critical curves can be obtained.Comment: Published versio

    Pivotal Role of Reduced Glutathione in Oxygen-induced Regulation of the Na + /K + Pump in Mouse Erythrocyte Membranes

    Get PDF
    This study addresses the mechanisms of oxygen-induced regulation of ion transport pathways in mouse erythrocyte, specifically focusing on the role of cellular redox state and ATP levels. Mouse erythrocytes possess Na+/K+ pump, K+-Cl− and Na+-K+-2Cl− cotransporters that have been shown to be potential targets of oxygen. The activity of neither cotransporter changed in response to hypoxia-reoxygenation. In contrast, the Na+/K+ pump responded to hypoxic treatment with reversible inhibition. Hypoxia-induced inhibition was abolished in Na+-loaded cells, revealing no effect of O2 on the maximal operation rate of the pump. Notably, the inhibitory effect of hypoxia was not followed by changes in cellular ATP levels. Hypoxic exposure did, however, lead to a rapid increase in cellular glutathione (GSH) levels. Decreasing GSH to normoxic levels under hypoxic conditions abolished hypoxia-induced inhibition of the pump. Furthermore, GSH added to the incubation medium was able to mimic hypoxia-induced inhibition. Taken together these data suggest a pivotal role of intracellular GSH in oxygen-induced modulation of the Na+/K+ pump activit

    Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2

    Get PDF
    We have used the Spitzer Space Telescope InfraRed Spectrograph (IRS) 22-μm peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASA’s Deep Impact Extended Investigation (DIXI). The comet was observed on UT 2008 August 12 and 13, while 5.5 AU from the Sun. We obtained two 200 frame sets of photometric imaging over a 2.7 hr period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comet’s antivelocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 ± 0.20 indicates a small effective radius for the nucleus of 0.57 ± 0.08 km and low geometric albedo 0.028 ± 0.009 (1σ). With this nucleus size and a water production rate of 3 × 10^(28) molecules s^(-1) at perihelion, we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU support our finding of a highly active nuclear surface. Compared to Deep Impact’s first target, comet 9P/Tempel 1, Hartley 2’s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, comet Hartley 2 should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Since the amplitude of nongravitational forces are surprisingly similar for both comets, close to the ensemble average for ecliptic comets, we conclude that comet Hartley 2 must have a much more isotropic pattern of time-averaged outgassing from its nuclear surface. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yr) at its current rate of mass loss

    Magnetic Order in the 2D Heavy-Fermion System CePt2In7 studied by muSR

    Full text link
    The low-temperature microscopic magnetic properties of the quasi-2D heavyfermion compound, CePt2In7 are investigated by using a positive muon-spin rotation and relaxation (?muSR) technique. Clear evidence for the formation of a commensurate antiferromagnetic order below TN=5.40 K is presented. The magnetic order parameter is shown to fit well to a modified BSC gap-energy function in a strong-coupling scenario.Comment: Accepted in Journal of Physics: Conference Series (2014

    Surface stress of Ni adlayers on W(110): the critical role of the surface atomic structure

    Full text link
    Puzzling trends in surface stress were reported experimentally for Ni/W(110) as a function of Ni coverage. In order to explain this behavior, we have performed a density-functional-theory study of the surface stress and atomic structure of the pseudomorphic and of several different possible 1x7 configurations for this system. For the 1x7 phase, we predict a different, more regular atomic structure than previously proposed based on surface x-ray diffraction. At the same time, we reproduce the unexpected experimental change of surface stress between the pseudomorphic and 1x7 configuration along the crystallographic surface direction which does not undergo density changes. We show that the observed behavior in the surface stress is dominated by the effect of a change in Ni adsorption/coordination sites on the W(110) surface.Comment: 14 pages, 3 figures Published in J. Phys.: Condens. Matter 24 (2012) 13500

    Droplet shapes on structured substrates and conformal invariance

    Full text link
    We consider the finite-size scaling of equilibrium droplet shapes for fluid adsorption (at bulk two-phase co-existence) on heterogeneous substrates and also in wedge geometries in which only a finite domain ΛA\Lambda_{A} of the substrate is completely wet. For three-dimensional systems with short-ranged forces we use renormalization group ideas to establish that both the shape of the droplet height and the height-height correlations can be understood from the conformal invariance of an appropriate operator. This allows us to predict the explicit scaling form of the droplet height for a number of different domain shapes. For systems with long-ranged forces, conformal invariance is not obeyed but the droplet shape is still shown to exhibit strong scaling behaviour. We argue that droplet formation in heterogeneous wedge geometries also shows a number of different scaling regimes depending on the range of the forces. The conformal invariance of the wedge droplet shape for short-ranged forces is shown explicitly.Comment: 20 pages, 7 figures. (Submitted to J.Phys.:Cond.Mat.

    Stochastic Process Associated with Traveling Wave Solutions of the Sine-Gordon Equation

    Full text link
    Stochastic processes associated with traveling wave solutions of the sine-Gordon equation are presented. The structure of the forward Kolmogorov equation as a conservation law is essential in the construction and so is the traveling wave structure. The derived stochastic processes are analyzed numerically. An interpretation of the behaviors of the stochastic processes is given in terms of the equation of motion.Comment: 12 pages, 9 figures; corrected typo
    corecore