5,671 research outputs found
A cooled telescope for infrared balloon astronomy
The characteristics of a 16 inch liquid helium cooled Cassegrain telescope with vibrating secondary mirror are discussed. The telescope is used in making far infrared astronomical observations. The system houses several different detectors for multicolor photometry. The cooled telescope has a ten to one increase in signal-to-noise ratio over a similar warm version and is installed in a high altitude balloon gondola to obtain data on the H2 region of the galaxy
Resonance NLS Solitons as Black Holes in Madelung Fluid
A new resonance version of NLS equation is found and embedded to the
reaction-diffusion system, equivalent to the anti-de Sitter valued Heisenberg
model, realizing a particular gauge fixing condition of the Jackiw-Teitelboim
gravity. The space-time points where dispersion change the sign correspond to
the event horizon, and the soliton solutions to the AdS black holes. The
soliton with velocity bounded above describes evolution on the hyperboloid with
nontrivial winding number and create under collisions the resonance states with
a specific life time.Comment: Plain Tex, 12 pages, 6 figure
Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations
We present a set of well-posed constraint-preserving boundary conditions for
a first-order in time, second-order in space, harmonic formulation of the
Einstein equations. The boundary conditions are tested using robust stability,
linear and nonlinear waves, and are found to be both less reflective and
constraint preserving than standard Sommerfeld-type boundary conditions.Comment: 18 pages, 7 figures, accepted in CQ
Cosmological perturbations in a healthy extension of Horava gravity
In Horava's theory of gravity, Lorentz symmetry is broken in exchange for
renormalizability, but the original theory has been argued to be plagued with
problems associated with a new scalar mode stemming from the very breaking of
Lorentz symmetry. Recently, Blas, Pujolas, and Sibiryakov have proposed a
healthy extension of Horava gravity, in which the behavior of the scalar mode
is improved. In this paper, we study scalar modes of cosmological perturbations
in extended Horava gravity. The evolution of metric and density perturbations
is addressed analytically and numerically. It is shown that for vanishing
non-adiabatic pressure of matter the large scale evolution of cosmological
perturbations converges to that described by a single constant, , which
is an analog of a curvature perturbation on the uniform-density slicing
commonly used in usual gravitational theories. The subsequent evolution is thus
determined completely by the value of .Comment: 10 pages, 4 figures; v2: published versio
Einstein's equations in Ashtekar's variables constitute a symmetric hyperbolic system
We show that the 3+1 vacuum Einstein field equations in Ashtekar's variables
constitutes a first order symmetric hyperbolic system for arbitrary but fixed
lapse and shift fields, by suitable adding to the system terms proportional to
the constraint equations.Comment: 4 pages, revte
Quasinormal modes prefer supersymmetry ?
One ambiguity in loop quantum gravity is the appearance of a free parameter
which is called Immirzi parameter. Recently Dreyer has argued that this
parameter may be fixed by considering the quasinormal mode spectrum of black
holes, while at the price of changing the gauge group to SO(3) rather than the
original one SU(2). Physically such a replacement is not quite natural or
desirable. In this paper we study the relationship between the black hole
entropy and the quasi normal mode spectrum in the loop quantization of N=1
supergravity. We find that a single value of the Immirzi parameter agrees with
the semiclassical expectations as well. But in this case the lowest
supersymmetric representation dominates, fitting well with the result based on
statistical consideration. This suggests that, so long as fermions are included
in the theory, supersymemtry may be favored for the consistency of the low
energy limit of loop quantum gravity.Comment: 3 page
From dust bowl to dust bowl:soils are still very much a frontier of science
When the Soil Science Society of America was created, 75 yr ago, the USA was suffering from major dust storms, causing the loss of enormous amounts of topsoil as well as human lives. These catastrophic events reminded public officials that soils are essential to society’s well-being. The Soil Conservation Service was founded and farmers were encouraged to implement erosion mitigation practices. Still, many questions about soil processes remained poorly understood and controversial. In this article, we argue that the current status of soils worldwide parallels that in the USA at the beginning of the 20th century. Dust bowls and large-scale soil degradation occur over vast regions in a number of countries. Perhaps more so even than in the past, soils currently have the potential to affect populations critically in several other ways as well, from their effect on global climate change, to the toxicity of brownfield soils in urban settings. Even though our collective understanding of soil processes has experienced significant advances since 1936, many basic questions still remain unanswered, for example whether or not a switch to no-till agriculture promotes C sequestration in soils, or how to account for microscale heterogeneity in the modeling of soil organic matter transformation. Given the enormity of the challenges raised by our (ab)uses of soils, one may consider that if we do not address them rapidly, and in the process heed the example of U.S. public officials in the 1930s who took swift action, humanity may not get a chance to explore other frontiers of science in the future. From this perspective, insistence on the fact that soils are critical to life on earth, and indeed to the survival of humans, may again stimulate interest in soils among the public, generate support for soil research, and attract new generations of students to study soils
Experimental modulation of capsule size in Cryptococcus neoformans
Experimental modulation of capsule size is an important technique for the study of the virulence of the encapsulated pathogen Cryptococcus neoformans. In this paper, we summarize the techniques available for experimental modulation of capsule size in this yeast and describe improved methods to induce capsule size changes. The response of the yeast to the various stimuli is highly dependent on the cryptococcal strain. A high CO(2) atmosphere and a low iron concentration have been used classically to increase capsule size. Unfortunately, these stimuli are not reliable for inducing capsular enlargement in all strains. Recently we have identified new and simpler conditions for inducing capsule enlargement that consistently elicited this effect. Specifically, we noted that mammalian serum or diluted Sabouraud broth in MOPS buffer pH 7.3 efficiently induced capsule growth. Media that slowed the growth rate of the yeast correlated with an increase in capsule size. Finally, we summarize the most commonly used media that induce capsule growth in C. neoformans
Causal structure of acoustic spacetimes
The so-called ``analogue models of general relativity'' provide a number of
specific physical systems, well outside the traditional realm of general
relativity, that nevertheless are well-described by the differential geometry
of curved spacetime. Specifically, the propagation of acoustic disturbances in
moving fluids are described by ``effective metrics'' that carry with them
notions of ``causal structure'' as determined by an exchange of sound signals.
These acoustic causal structures serve as specific examples of what can be done
in the presence of a Lorentzian metric without having recourse to the Einstein
equations of general relativity. (After all, the underlying fluid mechanics is
governed by the equations of traditional hydrodynamics, not by the Einstein
equations.) In this article we take a careful look at what can be said about
the causal structure of acoustic spacetimes, focusing on those containing sonic
points or horizons, both with a view to seeing what is different from standard
general relativity, and to seeing what the similarities might be.Comment: 51 pages, 39 figures (23 colour figures, colour used to convey
physics information.) V2: Two references added, some additional discussion of
maximal analytic extension, plus minor cosmetic change
Gravitational Duality in MacDowell-Mansouri Gauge Theory
Strong-weak duality invariance can only be defined for particular sectors of
supersymmetric Yang-Mills theories. Nevertheless, for full non-Abelian
non-supersymmetric theories, dual theories with inverted couplings, have been
found. We show that an analogous procedure allows to find the dual action to
the gauge theory of gravity constructed by the MacDowell-Mansouri model plus
the superposition of a term.Comment: 9 pages, LaTeX, no figure
- …
