130,390 research outputs found

    Electronic states in a magnetic quantum-dot molecule: phase transitions and spontaneous symmetry breaking

    Full text link
    We show that a double quantum-dot system made of diluted magnetic semiconductor behaves unlike usual molecules. In a semiconductor double quantum dot or in a diatomic molecule, the ground state of a single carrier is described by a symmetric orbital. In a magnetic material molecule, new ground states with broken symmetry can appear due the competition between the tunnelling and magnetic polaron energy. With decreasing temperature, the ground state changes from the normal symmetric state to a state with spontaneously broken symmetry. Interestingly, the symmetry of a magnetic molecule is recovered at very low temperatures. A magnetic double quantum dot with broken-symmetry phases can be used a voltage-controlled nanoscale memory cell.Comment: 4 pages, 5 figure

    Iron Deficiency Anemia: An Unexpected Cause of an Acute Occipital Lobe Stroke in an Otherwise Healthy Young Woman

    Get PDF
    A 29-year-old caucasian woman who presented to the hospital with an acute onset of right eye visual disturbance and headache was found to have an acute left occipital lobe infarction. Past medical history was significant for iron deficiency anemia (IDA) secondary to menorrhagia. Her initial hemoglobin level was 7.8 G/DL, and her symptoms improved after iron and blood transfusions. Hypercoagulable studies were completed in the outpatient setting, and the results were unremarkable. Her acute stroke was most likely related to IDA as she had low cardiovascular risk factors along with a negative complete stroke workup

    Quantum Criticality and Inhomogeneous Magnetic Order in Fe-doped alpha-YbAlB4

    Full text link
    The intermediate-valent polymorphs α\alpha- and β\beta-YbAlB4_4 exhibit quantum criticality and other novel properties not usually associated with intermediate valence. Iron doping induces quantum criticality in α\alpha-YbAlB4_4 and magnetic order in both compounds. We report results of muon spin relaxation (μ\muSR) experiments in the intermediate-valent alloys α\alpha-YbAl1x_{1-x}Fex_xB4_4, x=0.014x = 0.014 and 0.25. For x=0.014x = 0.014 we find no evidence for magnetic order down to 25 mK\@. The dynamic muon spin relaxation rate λd\lambda_d exhibits a power-law temperature dependence λdTa\lambda_d \propto T^{-a}, a=0.40(4)a = 0.40(4), in the temperature range 100 mK--2 K, in disagreement with predictions by theories of antiferromagnetic (AFM) or valence quantum critical behavior. For x=0.25x = 0.25, where AFM order develops in the temperature range 7.5--10 K, where we find coexistence of meso- or macroscopically segregated paramagnetic and AFM phases, with considerable disorder in the latter down to 2 K.Comment: 9 pages, 10 figures, to be published in Phys. Rev.

    Temperature dependence of the resonance and low energy spin excitations in superconducting FeTe0.6_{0.6}Se0.4_{0.4}

    Full text link
    We use inelastic neutron scattering to study the temperature dependence of the low-energy spin excitations in single crystals of superconducting FeTe0.6_{0.6}Se0.4_{0.4} (Tc=14T_c=14 K). In the low-temperature superconducting state, the imaginary part of the dynamic susceptibility at the electron and hole Fermi surfaces nesting wave vector Q=(0.5,0.5)Q=(0.5,0.5), χ(Q,ω)\chi^{\prime\prime}(Q,\omega), has a small spin gap, a two-dimensional neutron spin resonance above the spin gap, and increases linearly with increasing ω\hbar\omega for energies above the resonance. While the intensity of the resonance decreases like an order parameter with increasing temperature and disappears at temperature slightly above TcT_c, the energy of the mode is weakly temperature dependent and vanishes concurrently above TcT_c. This suggests that in spite of its similarities with the resonance in electron-doped superconducting BaFe2x_{2-x}(Co,Ni)x_xAs2_2, the mode in FeTe0.6_{0.6}Se0.4_{0.4} is not directly associated with the superconducting electronic gap.Comment: 7 pages, 6 figure

    Discriminative Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation

    Full text link
    Image-to-image translation has been made much progress with embracing Generative Adversarial Networks (GANs). However, it's still very challenging for translation tasks that require high quality, especially at high-resolution and photorealism. In this paper, we present Discriminative Region Proposal Adversarial Networks (DRPAN) for high-quality image-to-image translation. We decompose the procedure of image-to-image translation task into three iterated steps, first is to generate an image with global structure but some local artifacts (via GAN), second is using our DRPnet to propose the most fake region from the generated image, and third is to implement "image inpainting" on the most fake region for more realistic result through a reviser, so that the system (DRPAN) can be gradually optimized to synthesize images with more attention on the most artifact local part. Experiments on a variety of image-to-image translation tasks and datasets validate that our method outperforms state-of-the-arts for producing high-quality translation results in terms of both human perceptual studies and automatic quantitative measures.Comment: ECCV 201

    Cooling of Nanomechanical Resonator Based on Periodical Coupling to Cooper Pair Box

    Full text link
    We propose and study an active cooling mechanism for the nanomechanical resonator (NAMR) based on periodical coupling to a Cooper pair box (CPB), which is implemented by a designed series of magnetic flux pluses threading through the CPB. When the initial phonon number of the NAMR is not too large, this cooling protocol is efficient in decreasing the phonon number by two to three orders of magnitude. Our proposal is theoretically universal in cooling various boson systems of single mode. It can be specifically generalized to prepare the nonclassical state of the NAMR.Comment: 5pages,3figure

    Reentrant Phase Diagram of Yb2Ti2O7\rm{Yb_2Ti_2O_7} in 111\langle 111 \rangle Magnetic Field

    Full text link
    We present a magnetic phase diagram of rare-earth pyrochlore Yb2Ti2O7\rm{Yb_2Ti_2O_7} in a 111\langle 111 \rangle magnetic field. Using heat capacity, magnetization, and neutron scattering data, we show an unusual field-dependence of a first-order phase boundary, wherein a small applied field increases the ordering temperature. The zero-field ground state has ferromagnetic domains, while the spins polarize along 111\langle 111 \rangle above 0.65T. A classical Monte Carlo analysis of published Hamiltonians does account for the critical field in the low T limit. However, this analysis fails to account for the large bulge in the reentrant phase diagram, suggesting that either long-range interactions or quantum fluctuations govern low field properties.Comment: 5 pages, 5 pages supplementary informatio

    Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1)

    Full text link
    We present energy filtered electron emission spectromicroscopy with spatial and wave-vector resolution on few layer epitaxial graphene on SiC$(000-1) grown by furnace annealing. Low energy electron microscopy shows that more than 80% of the sample is covered by 2-3 graphene layers. C1s spectromicroscopy provides an independent measurement of the graphene thickness distribution map. The work function, measured by photoelectron emission microscopy (PEEM), varies across the surface from 4.34 to 4.50eV according to both the graphene thickness and the graphene-SiC interface chemical state. At least two SiC surface chemical states (i.e., two different SiC surface structures) are present at the graphene/SiC interface. Charge transfer occurs at each graphene/SiC interface. K-space PEEM gives 3D maps of the k_|| pi - pi* band dispersion in micron scale regions show that the Dirac point shifts as a function of graphene thickness. Novel Bragg diffraction of the Dirac cones via the superlattice formed by the commensurately rotated graphene sheets is observed. The experiments underline the importance of lateral and spectroscopic resolution on the scale of future electronic devices in order to precisely characterize the transport properties and band alignments
    corecore