53,576 research outputs found

    Using schema transformation pathways for data lineage tracing

    Get PDF
    With the increasing amount and diversity of information available on the Internet, there has been a huge growth in information systems that need to integrate data from distributed, heterogeneous data sources. Tracing the lineage of the integrated data is one of the problems being addressed in data warehousing research. This paper presents a data lineage tracing approach based on schema transformation pathways. Our approach is not limited to one specific data model or query language, and would be useful in any data transformation/integration framework based on sequences of primitive schema transformations

    Two-Photon Transport in a Waveguide Coupled to a Cavity with a Two-level System

    Full text link
    We consider a system where a waveguide is coupled to a cavity embedded with a two-level system (TLS), and study the effects when a two-photon quantum state is injected into the waveguide. The wave function of two outgoing photons is exactly solved using the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism. Our results explicitly exhibit the photon blockade effects in the strong atom-cavity coupling regime. The quantum statistical characters of the outgoing photons, including the photon bunching and anti-bunching behaviors, are also investigated in both the strong and weak coupling regimes. These results agree with the observations of recent experiments.Comment: 4 pages, 3 figure

    Duration distributions for different softness groups of gamma-ray bursts

    Full text link
    Gamma-ray bursts (GRBs) are divided into two classes according to their durations. We investigate if the softness of bursts plays a role in the conventional classification of the objects. We employ the BATSE (Burst and Transient Source Experiment) catalog and analyze the duration distributions of different groups of GRBs associated with distinct softness. Our analysis reveals that the conventional classification of GRBs with the duration of bursts is influenced by the softness of the objects. There exits a bimodality in the duration distribution of GRBs for each group of bursts and the time position of the dip in the bimodality histogram shifts with the softness parameter. Our findings suggest that the conventional classification scheme should be modified by separating the two well-known populations in different softness groups, which would be more reasonable than doing so with a single sample. According to the relation between the dip position and the softness parameter, we get an empirical function that can roughly set apart the short-hard and long-soft bursts: SP=(0.100±0.028)T90(0.85±0.18)SP = (0.100 \pm 0.028) T_{90}^{-(0.85 \pm 0.18)}, where SPSP is the softness parameter adopted in this paper.Comment: 20 pages, 10 figure

    Quantum Cluster Variables via Serre Polynomials

    Full text link
    For skew-symmetric acyclic quantum cluster algebras, we express the quantum FF-polynomials and the quantum cluster monomials in terms of Serre polynomials of quiver Grassmannians of rigid modules. As byproducts, we obtain the existence of counting polynomials for these varieties and the positivity conjecture with respect to acyclic seeds. These results complete previous work by Caldero and Reineke and confirm a recent conjecture by Rupel.Comment: minor corrections, reference added, example 4.3 added, 38 page

    Evidence for a Z < 8 Origin of the Source Subtracted Near Infrared Background

    Full text link
    This letter extends our previous fluctuation analysis of the near infrared background at 1.6 microns to the 1.1 micron (F110W) image of the Hubble Ultra Deep field. When all detectable sources are removed the ratio of fluctuation power in the two images is consistent with the ratio expected for faint, z<8, sources, and is inconsistent with the expected ratio for galaxies with z>8. We also use numerically redshifted model galaxy spectral energy distributions for 50 and 10 million year old galaxies to predict the expected fluctuation power at 3.6 microns and 4.5 microns to compare with recent Spitzer observations. The predicted fluctuation power for galaxies at z = 0-12 matches the observed Spitzer fluctuation power while the predicted power for z>13 galaxies is much higher than the observed values. As was found in the 1.6 micron (F160W) analysis the fluctuation power in the source subtracted F110W image is two orders of magnitude below the power in the image with all sources present. This leads to the conclusion that the 0.8--1.8 micron near infrared background is due to resolved galaxies in the redshift range z<8, with the majority of power in the redshift range of 0.5--1.5.Comment: Accepted for publication in the Astrophysical Journa
    corecore