73,414 research outputs found

    Wave packet transmission of Bloch electron manipulated by magnetic field

    Full text link
    We study the phenomenon of wave packet revivals of Bloch electrons and explore how to control them by a magnetic field for quantum information transfer. It is showed that the single electron system can be modulated into a linear dispersion regime by the "quantized" flux and then an electronic wave packet with the components localized in this regime can be transferred without spreading. This feature can be utilized to perform the high-fidelity transfer of quantum information encoded in the polarization of the spin. Beyond the linear approximation, the re-localization and self-interference occur as the novel phenomena of quantum coherence.Comment: 6 pages, 5 figures, new content adde

    Quantum state swapping via qubit network with Hubbard interaction

    Full text link
    We study the quantum state transfer (QST) in a class of qubit network with on-site interaction, which is described by the generalized Hubbard model with engineered couplings. It is proved that the system of two electrons with opposite spins in this quantum network of NN sites can be rigorously reduced into NN one dimensional engineered single Bloch electron models with central potential barrier. With this observation we find that such system can perform a perfect QST, the quantum swapping between two distant electrons with opposite spins. Numerical results show such QST and the resonant-tunnelling for the optimal on-site interaction strengths.Comment: 4 pages, 3 figure

    Light pseudoscalar eta and H->eta eta decay in the simplest little Higgs mode

    Full text link
    The SU(3) simplest little Higgs model in its original framework without the so-called mu term inevitably involves a massless pseudoscalar boson eta, which is problematic for b-physics and cosmological axion limit. With the mu term introduced by hand, the eta boson acquires mass m_eta ~ mu, which can be lighter than half the Higgs boson mass in a large portion of the parameter space. In addition, the introduced mu term generates sizable coupling of H-eta-eta. The Higgs boson can dominantly decay into a pair of eta's especially when mH below the WW threshold. Another new decay channel of H->Z+eta can be dominant or compatible with H -> WW for mH above the Z+eta threshold. We show that the LEP bound on the Higgs boson mass is loosened to some extent due to this new H->eta eta decay channel as well as the reduced coupling of H-Z-Z. The Higgs boson mass bound falls to about 110 GeV for f=3-4 TeV. Since the eta boson decays mainly into a bb pair, H-> eta eta -> 4b and H-> Z eta -> Z bb open up other interesting search channels in the pursuit of the Higgs boson in the future experiments. We discuss on these issues.Comment: major modification considering the simplest little Higgs model with the mu ter
    corecore