26,126 research outputs found
High Speed Dim Air Target Detection Using Airborne Radar under Clutter and Jamming Effects
The challenging potential problems associated with using airborne radar in detection of high Speed Maneuvering Dim Target (HSMDT) are the highly noise, jamming and clutter effects. The problem is not only how to remove clutter and jamming as well as the range migration and Doppler ambiguity estimation problems due to high relative speed between the targets and airborne radar. Some of the recently published works ignored the range migration problems, while the others ignored the Doppler ambiguity estimation. In this paper a new hybrid technique using Optimum Space Time Adaptive Processing (OSTAP), Second Order Keystone Transform (SOKT), and the Improved Fractional Radon Transform (IFrRT) was proposed. The OSTAP was applied as anti-jamming and clutter rejection method, the SOKT corrects the range curvature and part of the range walk, then the IFrRT estimates the target’ radial acceleration and corrects the residual range walk. The simulation demonstrates the validity and effectiveness of the proposed technique, and its advantages over the previous researches by comparing its probability of detection with the traditional methods. The new approach increases the probability of detection, and also overcomes the limitation of Doppler frequency ambiguity
Statistical Analysis of Filament Features Based on the H{\alpha} Solar Images from 1988 to 2013 by Computer Automated Detection Method
We improve our filament automated detection method which was proposed in our
previous works. It is then applied to process the full disk H data
mainly obtained by Big Bear Solar Observatory (BBSO) from 1988 to 2013,
spanning nearly 3 solar cycles. The butterfly diagrams of the filaments,
showing the information of the filament area, spine length, tilt angle, and the
barb number, are obtained. The variations of these features with the calendar
year and the latitude band are analyzed. The drift velocities of the filaments
in different latitude bands are calculated and studied. We also investigate the
north-south (N-S) asymmetries of the filament numbers in total and in each
subclass classified according to the filament area, spine length, and tilt
angle. The latitudinal distribution of the filament number is found to be
bimodal. About 80% of all the filaments have tilt angles within [0{\deg},
60{\deg}]. For the filaments within latitudes lower (higher) than 50{\deg} the
northeast (northwest) direction is dominant in the northern hemisphere and the
southeast (southwest) direction is dominant in the southern hemisphere. The
latitudinal migrations of the filaments experience three stages with declining
drift velocities in each of solar cycles 22 and 23, and it seems that the drift
velocity is faster in shorter solar cycles. Most filaments in latitudes lower
(higher) than 50{\deg} migrate toward the equator (polar region). The N-S
asymmetry indices indicate that the southern hemisphere is the dominant
hemisphere in solar cycle 22 and the northern hemisphere is the dominant one in
solar cycle 23.Comment: 51 pages, 12 tables, 25 figures, accepted for publication in ApJ
Single Top Quark Production and Decay at Next-to-leading Order in Hadron Collision
We present a calculation of the next-to-leading order QCD corrections, with
one-scale phase space slicing method, to single top quark production and decay
process at hadron colliders.
Using the helicity amplitude method, the angular correlation of the final state
partons and the spin correlation of the top quark are preserved. The effect of
the top quark width is also examined.Comment: 47 pages, 9 figure
Next-to-Leading Order Corrections to Single Top Quark Production and Decay at the Tevatron: 1. s-channel Process
We present a study of s-channel single top quark production at the upgraded
Tevatron collider, including the next-to-leading order (NLO) QCD
corrections to the production and the decay of the top quark. The "modified"
narrow width approximation was adopted to preserve the spin of the top quark in
its production and decay. We discuss the effect of the different
contributions on the inclusive cross section as well as various kinematic
distributions after imposing the relevant cuts to select s-channel single top
signal events. In particular the decay contribution, while small
in size, has a significant impact on several distributions. With the help of
the best-jet algorithm to reconstruct the top quark we demonstrate that it is
possible to study kinematical and spin correlations in s-channel single top
events. We furthermore compare top quark spin measurements in two different
basis and show how NLO corrections have to be taken into consideration in
searches for the Higgs boson through associated production at the
Tevatron.Comment: 39 pages, 37 figure
Can We Determine the Filament Chirality by the Filament Footpoint Location or the Barb-bearing?
We attempt to propose a method for automatically detecting the solar filament
chirality and barb bearing. We first introduce the unweighted undirected graph
concept and adopt the Dijkstra shortest-path algorithm to recognize the
filament spine. Then, we use the polarity inversion line (PIL) shift method for
measuring the polarities on both sides of the filament, and employ the
connected components labeling method to identify the barbs and calculate the
angle between each barb and the spine to determine the bearing of the barbs,
i.e., left or right. We test the automatic detection method with H-alpha
filtergrams from the Big Bear Solar Observatory (BBSO) H-alpha archive and
magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board
the Solar Dynamics Observatory (SDO). Four filaments are automatically detected
and illustrated to show the results. The barbs in different parts of a filament
may have opposite bearings. The filaments in the southern hemisphere (northern
hemisphere) mainly have left-bearing (right-bearing) barbs and positive
(negative) magnetic helicity, respectively. The tested results demonstrate that
our method is efficient and effective in detecting the bearing of filament
barbs. It is demonstrated that the conventionally believed one-to-one
correspondence between filament chirality and barb bearing is not valid. The
correct detection of the filament axis chirality should be done by combining
both imaging morphology and magnetic field observations.Comment: 20 pages, 7 figures, accepted for publication in RA
Pygmy and Giant Dipole Resonances by Coulomb Excitation using a Quantum Molecular Dynamics model
Pygmy and Giant Dipole Resonance (PDR and GDR) in Ni isotopes have been
investigated by Coulomb excitation in the framework of the Isospin-dependent
Quantum Molecular Dynamics model (IQMD). The spectra of rays are
calculated and the peak energy, the strength and Full Width at Half Maximum
(FWHM) of GDR and PDR have been extracted. Their sensitivities to nuclear
equation of state, especially to its symmetry energy term are also explored. By
a comparison with the other mean-field calculations, we obtain the reasonable
values for symmetry energy and its slope parameter at saturation, which gives
an important constrain for IQMD model. In addition, we also studied the neutron
excess dependence of GDR and PDR parameters for Ni isotopes and found that the
energy-weighted sum rule (EWSR) increases linearly with
the neutron excess.Comment: 8 pages, 12 figure
Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser-plasmas interaction
The anti-Stokes scattering and Stokes scattering in stimulated Brillouin
scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation.
In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes
Brillouin scattering (SABS) will occur after the second stage SBS rescattering.
The mechanism of SABS has been put forward to explain this phenomenon. And the
SABS will compete with the SBS rescattering to determine the total SBS
reflectivity. Thus, the SBS rescattering including the SABS is an important
saturation mechanism of SBS, and should be taken into account in the
high-intensity laser-plasmas interaction.Comment: 6 pages, 5 figure
Disk origin of broad optical emission lines of the TDE candidate PTF09djl
An otherwise dormant supermassive black hole (SMBH) in a galactic nucleus
flares up when it tidally disrupts a star passing by. Most of the tidal
disruption events (TDEs) and candidates discovered in the optical/UV have broad
optical emission lines with complex and diverse profiles of puzzling origin. In
this Letter, we show that the double-peaked broad Halpha line of the TDE
candidate PTF09djl can be well modelled with a relativistic elliptical
accretion disk and the peculiar substructures with one peak at the line rest
wavelength and the other redshifted to about 3.5x10^4 km/s are mainly due to
the orbital motion of the emitting matter within the disk plane of large
inclination 88\degr and pericenter orientation nearly vertical to the observer.
The accretion disk has an extreme eccentricity 0.966 and semimajor axis of 340
BH Schwarzschild radii. The viewing angle effects of large disk inclination
lead to significant attenuation of He emission lines originally produced at
large electron scattering optical depth and to the absence/weakness of He
emission lines in the spectra of PTF09djl. Our results suggest that the
diversities of line intensity ratios among the line species in optical TDEs are
probably due to the differences of disk inclinations.Comment: 5 pages, 3 figures, accepted for publication in the MNRAS Letter
- …
