172,678 research outputs found
Fatigue failure of materials under broad band random vibrations
The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation
Transverse momentum dependence in the perturbative calculation of pion form factor
By reanalysing transverse momentum dependence in the perturbative calculation
of pion form factor an improved expression of pion form factor which takes into
account the transverse momentum dependenc in hard scattering amplitude and
intrinsic transverse momentum dependence associated with pion wave functions is
given to leading order, which is available for momentum transfers of the order
of a few GeV as well as for . Our scheme can be extended to
evaluate the contributions to the pion form factor beyond leading order.Comment: 13 pages in LaTeX, plus 3 Postscript figure
Recommended from our members
Source-specific Fine Particulate Using Spatiotemporal Concentration Fields Developed using Chemical Transport Modelling and Data Assimilation
Dynamic elasticity by the theory of characteristics
Method of characteristics for analysis of elastic wave equations in Cartesian coordinate
Recursive Integral Method with Cayley Transformation
Recently, a non-classical eigenvalue solver, called RIM, was proposed to
compute (all) eigenvalues in a region on the complex plane. Without solving any
eigenvalue problem, it tests if a region contains eigenvalues using an
approximate spectral projection. Regions that contain eigenvalues are
subdivided and tested recursively until eigenvalues are isolated with a
specified precision. This makes RIM an eigensolver distinct from all existing
methods. Furthermore, it requires no a priori spectral information. In this
paper, we propose an improved version of {\bf RIM} for non-Hermitian eigenvalue
problems. Using Cayley transformation and Arnoldi's method, the computation
cost is reduced significantly. Effectiveness and efficiency of the new method
are demonstrated by numerical examples and compared with 'eigs' in Matlab
S-wave quantum entanglement in a harmonic trap
We analyze the quantum entanglement between two interacting atoms trapped in
a spherical harmonic potential. At ultra-cold temperature, ground state
entanglement is generated by the dominated s-wave interaction. Based on a
regularized pseudo-potential Hamiltonian, we examine the quantum entanglement
by performing the Schmidt decomposition of low-energy eigenfunctions. We
indicate how the atoms are paired and quantify the entanglement as a function
of a modified s-wave scattering length inside the trap.Comment: 10 pages, 5 figures, to be apear in PR
Structure of polydisperse inverse ferrofluids: Theory and computer simulation
By using theoretical analysis and molecular dynamics simulations, we
investigate the structure of colloidal crystals formed by nonmagnetic
microparticles (or magnetic holes) suspended in ferrofluids (called inverse
ferrofluids), by taking into account the effect of polydispersity in size of
the nonmagnetic microparticles. Such polydispersity often exists in real
situations. We obtain an analytical expression for the interaction energy of
monodisperse, bidisperse, and polydisperse inverse ferrofluids. Body-centered
tetragonal (bct) lattices are shown to possess the lowest energy when compared
with other sorts of lattices and thus serve as the ground state of the systems.
Also, the effect of microparticle size distributions (namely, polydispersity in
size) plays an important role in the formation of various kinds of structural
configurations. Thus, it seems possible to fabricate colloidal crystals by
choosing appropriate polydispersity in size.Comment: 22 pages, 8 figure
Theoretical study of nuclear spin polarization and depolarization in self-assembled quantum dots
We investigate how the strain-induced nuclear quadrupole interaction
influences the degree of nuclear spin polarization in self-assembled quantum
dots. Our calculation shows that the achievable nuclear spin polarization in
In_{x}Ga_{1-x}As quantum dots is related to the concentration of indium and the
resulting strain distribution in the dots. The interplay between the nuclear
quadrupole interaction and Zeeman splitting leads to interesting features in
the magnetic field dependence of the nuclear spin polarization. Our results are
in qualitative agreement with measured nuclear spin polarization by various
experimental groups.Comment: 14 pages, 13 figures, submitted to Physical Review
Supersymmetric Higgs Singlet Effects on B-Meson FCNC Observables at Large tan(beta)
Higgs singlet superfields are usually present in most extensions of the
Minimal Supersymmetric Standard Model (MSSM) that address the mu-problem, such
as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the Minimal
Nonminimal Supersymmetric Standard Model (MNSSM). Employing a gauge- and
flavour-covariant effective Lagrangian formalism, we show how the singlet Higgs
bosons of such theories can have significant contributions to B-meson
flavour-changing neutral current (FCNC) observables for large values of
at the 1-loop level. Illustrative results
are presented including effects on the B_s and B_d mass differences and on the
rare decay . In particular, we find that depending on the
actual value of the lightest singlet pseudoscalar mass in the NMSSM, the
branching ratio for can be enhanced or even suppressed with
respect to the Standard Model prediction by more than one order of magnitude.Comment: 28 pages, 8 figures, LaTeX. Minor updates. Version to be published in
PR
- …
