30,726 research outputs found
Light bulb heat exchanger for magnetohydrodynamic generator applications - Preliminary evaluation
The light-bulb heat-exchanger concept is investigated as a possible means of using a combustion heat source to supply energy to an inert gas MHD power generator system. In this concept, combustion gases flow through a central passage which consists of a duct with transparent walls through which heat is transferred by radiation to a radiation receiver which in turn heats the inert gas by convection. The effects of combustion-gas emissivity, transparent-wall-transmissivity, radiation-receiver emissivity, and the use of fins in the inert gas coolant passage are studied. The results indicate that inert gas outlet temperatures of 2500 K are possible for combustion temperatures of 3200 K and that sufficient energy can be transferred from the combustion gas to reduce its temperature to approximately 2000 K. At this temperature more conventional heat exchangers can be used
Euclidean TSP with few inner points in linear space
Given a set of points in the Euclidean plane, such that just points
are strictly inside the convex hull of the whole set, we want to find the
shortest tour visiting every point. The fastest known algorithm for the version
when is significantly smaller than , i.e., when there are just few inner
points, works in time [Knauer and Spillner,
WG 2006], but also requires space of order . The best
linear space algorithm takes time [Deineko, Hoffmann, Okamoto,
Woeginer, Oper. Res. Lett. 34(1), 106-110]. We construct a linear space
time algorithm. The new insight is extending the
known divide-and-conquer method based on planar separators with a
matching-based argument to shrink the instance in every recursive call. This
argument also shows that the problem admits a quadratic bikernel.Comment: under submissio
Constraints on proton structure from precision atomic physics measurements
Ground-state hyperfine splittings in hydrogen and muonium are very well
measured. Their difference, after correcting for magnetic moment and reduced
mass effects, is due solely to proton structure--the large QED contributions
for a pointlike nucleus essentially cancel. The rescaled hyperfine difference
depends on the Zemach radius, a fundamental measure of the proton, computed as
an integral over a product of electric and magnetic proton form factors. The
determination of the Zemach radius, (1.043 +/- 0.016) fm, from atomic physics
tightly constrains fits to accelerator measurements of proton form factors.
Conversely, we can use muonium data to extract an ``experimental'' value for
QED corrections to hydrogenic hyperfine data; we find that measurement and
theory are consistent.Comment: 4 pages, RevTeX 4; corrects errors, to be consistent with published
erratu
CO2 removal by solid amine sorbents. 1: Experimental studies of amine resin IR-45 with regard to spacecraft applications. 2: Computer program for predicting the transient performance of solid amine sorbent systems
The sorbent behavior of solid amine resin IR-45 with regard to potential use in regenerative CO2-removal systems for manned spacecraft is considered. Measurements of equilibrium sorption capacity of IR-45 for water and for CO2 are reported, and the dynamic mass transfer behavior of IR-45 beds is studied under conditions representative of those expected in a manned spacecraft. A digital computer program was written for the transient performance prediction of CO2 removal systems comprised of solid amine beds. Also evaluated are systems employing inorganic molecular-sieve sorbents. Tests show that there is definitely an effect of water loading on the absorption rate
String theoretic axion coupling and the evolution of cosmic structures
We examine the effects of the axion coupling to on the evolution
of cosmic structures. It is shown that the evolutions of the scalar- and
vector-type perturbations are not affected by this axion coupling. However the
axion coupling causes an asymmetric evolution of the two polarization states of
the tensor-type perturbation, which may lead to a sizable polarization
asymmetry in the cosmological gravitational wave if inflation involves a period
in which the axion coupling is important. The polarization asymmetry produced
during inflation are conserved over the subsequent evolution as long as the
scales remain in the large-scale limit, and thus this may lead to an observable
trace in the cosmic microwave background radiation.Comment: 10 pages, REVte
A review of near-wall Reynolds-stress
The advances made in second-order near-wall turbulence closures are summarized. All closures examined are based on some form of high Reynolds number models for the Reynolds stress and the turbulent kinetic energy dissipation rate equations. Consequently, most near-wall closures proposed to data attempt to modify the high Reynolds number models for the dissipation rate equation so that the resultant models are applicable all the way to the wall. The near-wall closures are examined for their asymptotic behavior so that they can be compared with the proper near-wall behavior of the exact equations. A comparison of the closure's performance in the calculation of a low Reynolds number plane channel flow is carried out. In addition, the closures are evaluated for their ability to predict the turbulence statistics and the limiting behavior of the structure parameters compared to direct simulation data
Mounting technique for pressure transducers minimizes measurement interferences
Miniaturized transducers are fabricated from commercially available four-arm semiconductor gages; transducers are connected as bridge circuit and mounted on internal face of small diaphragm. Jacket made of conductive plastic may be needed to avoid buildup or static charges
Singularities in scalar-tensor gravity
The analysis of certain singularities in scalar-tensor gravity contained in a
recent paper is completed, and situations are pointed out in which these
singularities cannot occur.Comment: 6 pages, LaTe
The Origin of Structures in Generalized Gravity
In a class of generalized gravity theories with general couplings between the
scalar field and the scalar curvature in the Lagrangian, we can describe the
quantum generation and the classical evolution of both the scalar and tensor
structures in a simple and unified manner. An accelerated expansion phase based
on the generalized gravity in the early universe drives microscopic quantum
fluctuations inside a causal domain to expand into macroscopic ripples in the
spacetime metric on scales larger than the local horizon. Following their
generation from quantum fluctuations, the ripples in the metric spend a long
period outside the causal domain. During this phase their evolution is
characterized by their conserved amplitudes. The evolution of these
fluctuations may lead to the observed large scale structures of the universe
and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur
- …
