1,911 research outputs found

    Evolution of transport properties of BaFe2-xRuxAs2 in a wide range of isovalent Ru substitution

    Full text link
    The effects of isovalent Ru substitution at the Fe sites of BaFe2-xRuxAs2 are investigated by measuring resistivity and Hall coefficient on high-quality single crystals in a wide range of doping (0 < x < 1.4). Ru substitution weakens the antiferromagnetic (AFM) order, inducing superconductivity for relatively high doping level of 0.4 < x < 0.9. Near the AFM phase boundary, the transport properties show non-Fermi-liquid-like behaviors with a linear-temperature dependence of resistivity and a strong temperature dependence of Hall coefficient with a sign change. Upon higher doping, however, both of them recover conventional Fermi-liquid behaviors. Strong doping dependence of Hall coefficient together with a small magnetoresistance suggest that the anomalous transport properties can be explained in terms of anisotropic charge carrier scattering due to interband AFM fluctuations rather than a conventional multi-band scenario.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    Positive exchange bias in ferromagnetic La0.67Sr0.33MnO3 / SrRuO3 bilayers

    Full text link
    Epitaxial La0.67Sr0.33MnO3 (LSMO)/ SrRuO3 (SRO) ferromagnetic bilayers have been grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition with atomic layer control. We observe a shift in the magnetic hysteresis loop of the LSMO layer in the same direction as the applied biasing field (positive exchange bias). The effect is not present above the Curie temperature of the SRO layer (), and its magnitude increases rapidly as the temperature is lowered below . The direction of the shift is consistent with an antiferromagnetic exchange coupling between the ferromagnetic LSMO layer and the ferromagnetic SRO layer. We propose that atomic layer charge transfer modifies the electronic state at the interface, resulting in the observed antiferromagnetic interfacial exchange coupling.Comment: accepted to Applied Physics Letter

    Observation of a coherence peak and pair-breaking effects in THz conductivity of BaFe22x_{2-2x}Co2x_{2x}As2_2

    Full text link
    We report a study of high quality pnictide superconductor BaFe1.84_{1.84}Co0.16_{0.16}As2_2 thin films using time-domain THz spectroscopy. Near Tc_c we find evidence for a coherence peak and qualitative agreement with the weak-coupling Mattis-Bardeen form of the conductivity. At low temperature, we find that the real part of the THz conductivity is not fully suppressed and σ2\sigma_2 is significantly smaller than the Matthis-Bardeen expectation. The temperature dependence of the penetration depth λ\lambda follows a power law with an unusually high exponent of 3.1. We interpret these results as consistent with impurity scattering induced pair-breaking. Taken together our results are strong evidence for an extended s±\pm symmetry order parameter.Comment: 4.2 pages, 4 figures, submitted. v2: references format corrected, no change to tex

    Conductance asymmetry in point-contacts on epitaxial thin films of Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2

    Full text link
    Point-contact spectroscopy is a powerful tool for probing superconductors. One of the most common observations in the point-contact spectra on the recently discovered ferropnictide superconductors is a large conductance asymmetry with respect to voltage across the point-contact. In this paper we show that the antisymmetric part of the point-contact spectrum between a silver tip and an epitaxial thin film of Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2 shows certain unique features. These features have an interesting evolution with increasing temperature up to a temperature that is 30% larger than the critical temperature TcT_c of the superconductor. We argue that this evolution can be associated with the rich normal state properties of these materials.Comment: 4 pages, 2 figure

    Localization of Two-dimensional Electron Gas in LaAlO3/SrTiO3 Heterostructures

    Full text link
    We report strong localization of 2D electron gas in LaAlO3 / SrTiO3 epitaxial thin-film heterostructures grown on (LaAlO3)0.3-(Sr2AlTaO3)0.7 substrates by using pulsed laser deposition with in-situ reflection high-energy electron diffraction. Using longitudinal and transverse magnetotransport measurements, we have determined that disorder at the interface influences the conduction behavior, and that increasing the carrier concentration by growing at lower oxygen partial pressure changes the conduction from strongly localized at low carrier concentration to metallic at higher carrier concentration, with indications of weak localization. We interpret this behavior in terms of a changing occupation of Ti 3d bands near the interface, each with a different spatial extent and susceptibility to localization by disorder, and differences in carrier confinement due to misfit strain and point defects.Comment: 12 pages, 4 figure

    Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects

    Full text link
    We investigated a switchable ferroelectric diode effect and its physical mechanism in Pt/BiFeO3/SrRuO3 thin-film capacitors. Our results of electrical measurements support that, near the Pt/BiFeO3 interface of as-grown samples, a defective layer (possibly, an oxygen-vacancy-rich layer) becomes formed and disturbs carrier injection. We therefore used an electrical training process to obtain ferroelectric control of the diode polarity where, by changing the polarization direction using an external bias, we could switch the transport characteristics between forward and reverse diodes. Our system is characterized with a rectangular polarization hysteresis loop, with which we confirmed that the diode polarity switching occurred at the ferroelectric coercive voltage. Moreover, we observed a simultaneous switching of the diode polarity and the associated photovoltaic response dependent on the ferroelectric domain configurations. Our detailed study suggests that the polarization charge can affect the Schottky barrier at the ferroelectric/metal interfaces, resulting in a modulation of the interfacial carrier injection. The amount of polarization-modulated carrier injection can affect the transition voltage value at which a space-charge-limited bulk current-voltage (J-V) behavior is changed from Ohmic (i.e., J ~ V) to nonlinear (i.e., J ~ V^n with n \geq 2). This combination of bulk conduction and polarization-modulated carrier injection explains the detailed physical mechanism underlying the switchable diode effect in ferroelectric capacitors.Comment: Accepted for publication in Phys. Rev.

    Entanglement witnesses arising from Choi type positive linear maps

    Full text link
    We construct optimal PPTES witnesses to detect 333\otimes 3 PPT entangled edge states of type (6,8)(6,8) constructed recently \cite{kye_osaka}. To do this, we consider positive linear maps which are variants of the Choi type map involving complex numbers, and examine several notions related to optimality for those entanglement witnesses. Through the discussion, we suggest a method to check the optimality of entanglement witnesses without the spanning property.Comment: 18 pages, 4 figures, 1 tabl
    corecore