732 research outputs found
Avoiding inadvertent epidural injection of drugs intended for non-epidural use
Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsInadvertent administration of non-epidural medications into the epidural space has the potential for serious morbidity and mortality. The aim of this study was to collate reported incidents of this type, describe the potential mechanisms of occurrence and identify possible solutions. We searched medical databases and reviewed reference lists of papers retrieved, covering a period of 35 years, regarding this type of medication incident. The 31 reports of 37 cases found is likely to represent a gross underestimation of the actual number of incidents that occur. 'Syringe swap', 'ampoule error', and epidural/intravenous line confusion were the main sources of error in 36/37 cases (97%). Given that no effective treatment for such errors has been identified, prevention should be the main defence strategy. Despite all the precautions that are currently undertaken, accidents will inevitably occur. We have identified areas for systemwide change that may prevent these types of incidents from occurring in future.http://www.aaic.net.au/Article.asp?D=200213
A Fault-Tolerant Two-Motor Drive With FCS-MP-Based Flux and Torque Control
Independently controlled multi-motor drives are typically realized by using a common dc link and independent sets of three-phase inverters and motors. In the case of an open-circuit fault in an inverter leg, one motor becomes single-phase. To enable continued controllable operation by eliminating single-phasing, the supply for the motor phase with the faulted inverter leg can be paralleled to a healthy leg of another inverter, using hardware reconfiguration. Hence, the two motors are now supplied from a five-leg inverter, which has inherent voltage and current limitations. Theoretically, violating the voltage limit leads to inverter over-modulation and large torque oscillations. It is shown here that the finite-control-set model predictive control (FCS-MPC), designed to control the machines’ stator flux and torque, can consider the inherent voltage limit dynamically in the control loop. Apart from preserving the independent control of the two machines, the additional constraint consideration significantly widens the operating speed ranges of the machines. In particular, it is shown that whenever the voltage limit is entered, the controller reduces the stator flux level automatically, without requiring external flux reference change. The obtained performance is illustrated using experimental results and is also compared to the conventional two-motor field-oriented control scheme. The control concept is thus fully experimentally verified
A Comparative Study of Synchronous Current Control Schemes Based on FCS-MPC and PI-PWM for a Two-Motor Three-Phase Drive
A two-motor drive, supplied by a five-leg inverter, is considered in this paper. The independent control of machines with full dc-bus voltage utilization is typically achieved using an existing pulsewidth modulation (PWM) technique in conjunction with field-oriented control, based on PI current control. However, model predictive control (MPC), based on a finite number of control inputs [finite-control-set MPC (FCS-MPC)], does not utilize a pulsewidth modulator. This paper introduces three FCS-MPC schemes for synchronous current control in this drive system. The first scheme uses all of the available switching states. The second and third schemes are aimed at reducing the computational burden and utilize a reduced set of voltage vectors and a duty ratio partitioning principle, respectively. Steady-state and transient performances are analyzed and compared both against each other and with respect to the field-oriented control based on PI controllers and PWM. All analyses are experimental and use the same experimental rig and test conditions. Comparison of the predictive schemes leads to the conclusion that the first two schemes have the fastest transient response. The third scheme has a much smaller current ripple while achieving perfect control decoupling between the machines and is of low computational complexity. Nevertheless, at approximately the same switching loss, the PI-PWM control yields the lowest current ripple but with slower electrical transient response. © 1982-2012 IEEE
Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices
Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective
components for spintronic applications and are of fundamental interest in the
study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report
on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron
density and confinement in QPCs with two different top-gate architectures. We
obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding
previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in
InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential,
particularly for the lowest 1D subband. This suggests careful management of the
QPC's confinement potential may enable the high g* desirable for spintronic
applications without resorting to narrow-gap materials such as InAs or InSb.
The 0.7 anomaly and zero-bias peak are also highly sensitive to confining
potential, explaining the conflicting density dependencies of the 0.7 anomaly
in the literature.Comment: 23 pages, 7 figure
Exploring the attitudes of students undertaking sports degrees towards online international learning
Abstract Aims: There is an increased focus on the internationalisation of the learning experiences of university students1. One way this can be achieved is through ‘virtual internationalisation’2, which can be promoted through the use of Online International Learning (OIL) programmes. This article on sport pedagogy investigates the attitudes of sport students to such a programme. Methods: This article uses quantitative and qualitative methods. 63 students completed a survey and wrote reflective reports. Data was collected from a survey of 16 targeted questions addressing the attitudes of students towards the programme. Students also wrote reflective reports on their experiences, allowing for qualitative responses to be analysed. Results: 62% of students surveyed found the internationalised module to have been a worthwhile experience in terms of learning new skills and working with a partner from an institution based in another continent. 65% suggested that they learned skills on the internationalised module they would use again in education and in future employment. Students from European Union countries gave high rates of positive feedback. 100% reported that the module was a worthwhile experience, compared to 60% of UK students and 38% of international students from outside the European Union. Conclusion: 62% of students surveyed stated that they learned new skills, and there was a perceived value to the programme in terms of enhancing employment prospects. Virtual mobilities projects offer a possible method for tutors to give students international experiences, which is important as sport is now a globalised industry
Temperature Dependence of Spin-Split Peaks in Transverse Electron Focusing
We present experimental results of transverse electron-focusing measurements performed using n-type GaAs. In the
presence of a small transverse magnetic field (B⊥), electrons are focused from the injector to detector leading to
focusing peaks periodic in B⊥. We show that the odd-focusing peaks exhibit a split, where each sub-peak represents a
population of a particular spin branch emanating from the injector. The temperature dependence reveals that the
peak splitting is well defined at low temperature whereas it smears out at high temperature indicating the
exchange-driven spin polarisation in the injector is dominant at low temperatures
Water and sodium intake habits and status of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment: an observational field based study
<p>Abstract</p> <p>Background</p> <p>Anecdotal evidence suggests ultra-runners may not be consuming sufficient water through foods and fluids to maintenance euhydration, and present sub-optimal sodium intakes, throughout multi-stage ultra-marathon (MSUM) competitions in the heat. Subsequently, the aims were primarily to assess water and sodium intake habits of recreational ultra-runners during a five stage 225 km semi self-sufficient MSUM conducted in a hot ambient environment (T<sub>max</sub> range: 32°C to 40°C); simultaneously to monitor serum sodium concentration, and hydration status using multiple hydration assessment techniques.</p> <p>Methods</p> <p>Total daily, pre-stage, during running, and post-stage water and sodium ingestion of ultra-endurance runners (UER, <it>n</it> = 74) and control (CON, <it>n</it> = 12) through foods and fluids were recorded on Stages 1 to 4 by trained dietetic researchers using dietary recall interview technique, and analysed through dietary analysis software. Body mass (BM), hydration status, and serum sodium concentration were determined pre- and post-Stages 1 to 5.</p> <p>Results</p> <p>Water (overall mean (SD): total daily 7.7 (1.5) L/day, during running 732 (183) ml/h) and sodium (total daily 3.9 (1.3) g/day, during running 270 (151) mg/L) ingestion did not differ between stages in UER (<it>p</it> < 0.001 <it>vs</it>. CON). Exercise-induced BM loss was 2.4 (1.2)% (<it>p</it> < 0.001). Pre- to post-stage BM gains were observed in 26% of UER along competition. Pre- and post-stage plasma osmolality remained within normal clinical reference range (280 to 303 mOsmol/kg) in the majority of UER (<it>p</it> > 0.05 <it>vs</it>. CON pre-stage). Asymptomatic hyponatraemia (<135 mmol/L) was evident pre- and post-stage in <it>n</it> = 8 UER, corresponding to 42% of sampled participants. Pre- and post-stage urine colour, urine osmolality and urine/plasma osmolality ratio increased (<it>p</it> < 0.001) as competition progressed in UER, with no change in CON. Plasma volume and extra-cellular water increased (<it>p</it> < 0.001) 22.8% and 9.2%, respectively, from pre-Stage 1 to 5 in UER, with no change in CON.</p> <p>Conclusion</p> <p>Water intake habits of ultra-runners during MSUM conducted in hot ambient conditions appear to be sufficient to maintain baseline euhydration levels. However, fluid over-consumption behaviours were evident along competition, irrespective of running speed and gender. Normonatraemia was observed in the majority of ultra-runners throughout MSUM, despite sodium ingestion under benchmark recommendations.</p
Data-Driven Analysis of Engagement in Gamified Learning Environments: A Methodology for Real-Time Measurement of MOOCs
Welfare and economic development is directly dependent on the availability of highly skilled and educated individuals in society. In the UK, higher education is accessed by a large percentage of high school graduates (50% in 2017). Still, in Brazil, a limited number of pupils leaving high schools continue their education (up to 20%). Initial pioneering efforts of universities and companies to support pupils from underprivileged backgrounds, to be able to succeed in being accepted by universities include personalised learning solutions. However, initial findings show that typical distance learning problems occur with the pupil population: isolation, demotivation, and lack of engagement. Thus, researchers and companies proposed gamification. However, gamification design is traditionally exclusively based on theory-driven approaches and usually ignore the data itself. This paper takes a different approach, presenting a large-scale study that analysed, statistically and via machine learning (deep and shallow), the first batch of students trained with a Brazilian gamified intelligent learning software (called CamaleOn), to establish, via a grassroots method based on learning analytics, how gamification elements impact on student engagement. The exercise results in a novel proposal for real-time measurement on Massive Open Online Courses (MOOCs), potentially leading to iterative improvements of student support. It also specifically analyses the engagement patterns of an underserved community
Nutrition Strategies for Triathlon
Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness
Genetic dissection of an amygdala microcircuit that gates conditioned fear
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ^+ neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ^− neurons in CEl. Electrical silencing of PKC-δ^+ neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called Cel_(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing
- …
