15,138 research outputs found
Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories
An algebraic method is used to work out the mass spectra and symmetry
breaking patterns of general vacuum states in N=2 supersymmetric SU(n)
Chern-Simons-Higgs systems with the matter fields being in the adjoint
representation. The approach provides with us a natural basis for fields, which
will be useful for further studies in the self-dual solutions and quantum
corrections. As the vacuum states satisfy the SU(2) algebra, it is not
surprising to find that their spectra are closely related to that of angular
momentum addition in quantum mechanics. The analysis can be easily generalized
to other classical Lie groups.Comment: 17 pages, use revte
The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories
By taking into account the effect of the would be Chern-Simons term, we
calculate the quantum correction to the Chern-Simons coefficient in
supersymmetric Chern-Simons Higgs theories with matter fields in the
fundamental representation of SU(n). Because of supersymmetry, the corrections
in the symmetric and Higgs phases are identical. In particular, the correction
is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result
should be quite general, and have important implication for the more
interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are
included, 13 pages, 1 figure, latex with revte
Orbital Reconstruction in a Self-assembled Oxygen Vacancy Nanostructure
We demonstrate the microscopic role of oxygen vacancies spatially confined
within nanometer inter-spacing (about 1 nm) in BiFeO3, using resonant soft
X-ray scattering techniques and soft X-ray spectroscopy measurements. Such
vacancy confinements and total number of vacancy are controlled by substitution
of Ca2+ for Bi3+ cation. We found that by increasing the substitution, the
in-plane orbital bands of Fe3+ cations are reconstructed without any redox
reaction. It leads to a reduction of the hopping between Fe atoms, forming a
localized valence band, in particular Fe 3d-electronic structure, around the
Fermi level. This band localization causes to decrease the conductivity of the
doped BiFeO3 system.Comment: 24 pages, 4 figures, and 4 supplementary figure
Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100)
Epitaxial FeRh(100) films (CsCl structure, thick), prepared
{\it in-situ} on a W(100) single crystal substrate, have been investigated via
valence band and core level photoemission. The presence of the
temperature-induced, first-order, antiferromagnetic to ferromagnetic
(AF FM) transition in these films has been verified via linear
dichroism in photoemission from the Fe 3 levels. Core level spectra indicate
a large moment on the Fe atom, practically unchanged in the FM and AF phases.
Judging from the valence band spectra, the metamagnetic transition takes place
without substantial modification of the electronic structure. In the FM phase,
the spin-resolved spectra compare satisfactorily to the calculated
spin-polarized bulk band structure.Comment: 7 pages, 5 figure
Optimal estimator for assessing landslide model efficiency
International audienceThe often-used success rate (SR) in measuring cell-based landslide model efficiency is based on the ratio of successfully predicted unstable cells over total actual landslide sites without considering the performance in predicting stable cells. We proposed a modified SR (MSR), in which we include the performance of stable cell prediction. The goal and virtue of MSR is to avoid over-prediction while upholding stable sensitivity throughout all simulated cases. Landslide susceptibility maps (a total of 3969 cases) with full range of performance (from worse to perfect) in stable and unstable cell predictions are created and used to probe how estimators respond to model results in calculating efficiency. The kappa method used for satellite image analysis is drawn for comparison. Results indicate that kappa is too stern for landslide modeling giving very low efficiency values in 90% simulated cases. The old SR tends to give high model efficiency under certain conditions yet with significant over-prediction. To examine the capability of MSR and the differences between SR and MSR as performance indicator, we applied the SHALSTAB model onto a mountainous watershed in Taiwan. Despite the fact the best model result deduced by SR projects 120 hits over 131 actual landslide sites, this high efficiency is only obtained when unstable cells cover an incredibly high percentage (75%) of the entire watershed. By contrast, the best simulation indicated by MSR projects 83 hits over 131 actual landslide sites while unstable cells only cover 16% of the studied watershed
The BPS Domain Wall Solutions in Self-Dual Chern-Simons-Higgs Systems
We study domain wall solitons in the relativistic self-dual Chern-Simons
Higgs systems by the dimensional reduction method to two dimensional spacetime.
The Bogomolny bound on the energy is given by two conserved quantities in a
similar way that the energy bound for BPS dyons is set in some Yang-Mills-Higgs
systems in four dimensions. We find the explicit soliton configurations which
saturate the energy bound and their nonrelativistic counter parts. We also
discuss the underlying N=2 supersymmetry.Comment: 16 pages, LaTeX, no figure, a minor change in acknowledgment
Ballistic transport, chiral anomaly and emergence of the neutral electron - hole plasma in graphene
The process of coherent creation of particle - hole excitations by an
electric field in graphene is quantitatively described using a dynamic "first
quantized" approach. We calculate the evolution of current density, number of
pairs and energy in ballistic regime using the tight binding model. The series
in electric field strength up to third order in both DC and AC are
calculated. We show how the physics far from the two Dirac points enters
various physical quantities in linear response and how it is related to the
chiral anomaly. The third harmonic generation and the imaginary part of
conductivity are obtained. It is shown that at certain time scale
the physical behaviour dramatically changes and the
perturbation theory breaks down. Beyond the linear response physics is explored
using an exact solution of the first quantized equations. While for small
electric fields the I-V curve is linear characterized by the universal minimal
resistivity %, at the conductivity grows
fast. The copious pair creation (with rate ), analogous to Schwinger's
electron - positron pair creation from vacuum in QED, leads to creation of the
electron - hole plasma at ballistic times of order . This process is
terminated by a relaxational recombination.Comment: 15 pages, 5 figures
Self-DUal SU(3) Chern-Simons Higgs Systems
We explore self-dual Chern-Simons Higgs systems with the local and
global symmetries where the matter field lies in the adjoint
representation. We show that there are three degenerate vacua of different
symmetries and study the unbroken symmetry and particle spectrum in each
vacuum. We classify the self-dual configurations into three types and study
their properties.Comment: Columbia Preprint CU-TP-635, 19 page
- …
