133,478 research outputs found
Spectrum-generating Symmetries for BPS Solitons
We show that there exist nonlinearly realised duality symmetries that are
independent of the standard supergravity global symmetries, and which provide
active spectrum-generating symmetries for the fundamental BPS solitons. The
additional ingredient, in any spacetime dimension, is a single scaling
transformation that allows one to map between BPS solitons with different
masses. Without the inclusion of this additional transformation, which is a
symmetry of the classical equations of motion, but not the action, it is not
possible to find a spectrum-generating symmetry. The necessity of including
this scaling transformation highlights the vulnerability of duality multiplets
to quantum anomalies. We argue that fundamental BPS solitons may be immune to
this threat.Comment: References added. Latex, 29 page
Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation
Sub-parsec binary massive black holes (BBHs) are long anticipated to exist in
many QSOs but remain observationally elusive. In this paper, we propose a novel
method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO
hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded
by a circum-binary disk, each component of the BBH is surrounded by a small
accretion disk, and a gap is opened by the secondary component in between the
circum-binary disk and the two small disks. Assuming such a BBH structure, we
generate mock microlensing light curves for some QSO systems that host BBHs
with typical physical parameters. We show that microlensing light curves of a
BBH QSO system at the infrared-optical-UV bands can be significantly different
from those of corresponding QSO system with a single massive black hole (MBH),
mainly because of the existence of the gap and the rotation of the BBH (and its
associated small disks) around the center of mass. We estimate the half-light
radii of the emission region at different wavelengths from mock light curves
and find that the obtained half-light radius vs. wavelength relations of BBH
QSO systems can be much flatter than those of single MBH QSO systems at a
wavelength range determined by the BBH parameters, such as the total mass, mass
ratio, separation, accretion rates, etc. The difference is primarily due to the
existence of the gap. Such unique features on the light curves and half-light
radius-wavelength relations of BBH QSO systems can be used to select and probe
sub-parsec BBHs in a large number of lensed QSOs to be discovered by current
and future surveys, including the Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS), the Large Synoptic Survey telescope (LSST) and Euclid.Comment: 18 pages, 17 figures, accepted for publication in the Astrophysical
Journa
Recommended from our members
Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice.
BackgroundObesity is associated with gut microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Given the high and increasing prevalence of obesity worldwide, anti-obesity treatments that are safe, effective and widely available would be beneficial. We examined whether the medicinal mushroom Antrodia cinnamomea may reduce obesity in mice fed with a high-fat diet (HFD).MethodsMale C57BL/6J mice were fed a HFD for 8 weeks to induce obesity and chronic inflammation. The mice were treated with a water extract of A. cinnamomea (WEAC), and body weight, fat accumulation, inflammation markers, insulin sensitivity and the gut microbiota were monitored.ResultsAfter 8 weeks, the mean body weight of HFD-fed mice was 39.8±1.2 g compared with 35.8±1.3 g for the HFD+1% WEAC group, corresponding to a reduction of 4 g or 10% of body weight (P<0.0001). WEAC supplementation reduced fat accumulation and serum triglycerides in a statistically significant manner in HFD-fed mice. WEAC also reversed the effects of HFD on inflammation markers (interleukin-1β, interleukin-6, tumor necrosis factor-α), insulin resistance and adipokine production (leptin and adiponectin). Notably, WEAC increased the expression of intestinal tight junctions (zonula occludens-1 and occludin) and antimicrobial proteins (Reg3g and lysozyme C) in the small intestine, leading to reduced blood endotoxemia. Finally, WEAC modulated the composition of the gut microbiota, reducing the Firmicutes/Bacteroidetes ratio and increasing the level of Akkermansia muciniphila and other bacterial species associated with anti-inflammatory properties.ConclusionsSupplementation with A. cinnamomea produces anti-obesogenic, anti-inflammatory and antidiabetic effects in HFD-fed mice by maintaining intestinal integrity and modulating the gut microbiota
The Low-level Spectrum of the String
We investigate the spectrum of physical states in the string theory, up
to level 2 for a multi-scalar string, and up to level 4 for the two-scalar
string. The (open) string has a photon as its only massless state. By
using screening charges to study the null physical states in the two-scalar
string, we are able to learn about the gauge symmetries of the states in
the multi-scalar string.Comment: 31 pages, Plain Tex, CTP TAMU-70/92, Goteborg ITP 92-43,
Imperial/TP/91-92/22, KCL-TH-92-
Electron multiplier development /phase 1/
Fabrication of aluminum oxide thin film window for capillary type photomultiplier tube
- …
